Introduction

Properties emerging from nanocomposites based on clay have been extensively studied and explored as powerful tools in a series of applications, such as adsorbents of organic pollutants in soil, water and air, rheological control agents, paints, medicine [1-4]. Owing to hydrophilic nature of clay, the intercalation by water-soluble polymers is expected to be relatively simple. However, early attempts to intercalate PVAL, P4VP or PEG between face-to-face clay-plates were not successful, as shown by XRD experiment [5]. In fact, that is due to many factors, as the solvent quality and the elaboration methods.

The main role of the polymer intercalation is to expand the interlayer-spacing and to reduce the effective interaction between the clay-platelets. The first goal has been achieved by making use of the anionic charge within the interlamellar galleries. Since the van der Waals interactions between solid surfaces decrease with the square of the separation-distance, the insertion of the organic or inorganic molecules into the interlamellar space greatly helps to achieve the second aim [6-7]. The used poly(ethylene oxide) (PEO) is a nonionic and water-soluble polymer with many applications, due to its flocculent, thickening, lubrication, dispersing, and water-retention properties [8]. Recently, PEO/Clay nanocomposites are
promising materials and showing a great potential for various applications. PEO and its low-molecular-weight PEG can intercalate between clay-plates giving rise to a limited increase of the basal spacing (about 0.8 nm) [9]. Many studies have further more focused on the structure and the conformation of the PEO chains in the confined space of clays [10]-[11]. The purpose of this work is to contribute to the understanding of how hydrophilic PEG6000 chains interact with clay-plates and to obtain further information regarding the interplate separation profile, as a function of the polymer-density. For this we assume that the PEG chains are grafted onto face-to-face clay-plates.

This paper is organized as follows. In the next section, we summarize our theoretical framework about the face-to-face effective interactions. A comparison between the theory and some experiments is given in the third section. Finally, some concluding remarks are drawn in the last section.

Theoretical framework

Consider a given clay-plate pair confining end-grafted polymer chains (figure 1). Each consists of N monomers of common size, b. In addition, we assume that the confined host medium is a good solvent.

![Figure 1: Two interacting layers of grafted PEG chains.](image)

To describe physics, we need the expression of the free energy (per unit area), F_{tot}. In fact, the latter is the sum of two contributions

$$F_{\text{tot}} = F_{\text{vdw}} + F_p.$$

The first term accounts for the contribution of the van der Waals forces between the adjacent clay-plates [12],

$$F_{\text{vdw}} = -\frac{A_H}{12\pi d^4},$$

where d is the separation between the considered clay-plates and A_H is the Hamaker constant. The second term in equality (1) is that of the steric forces [13],

$$F_p = ak_BT b^7 \gamma^2 \Gamma_2^2 \left(\frac{1}{\Gamma_2^*}\right)^2.$$

Here α is a numerical coefficient of the order of unity, $\Gamma_2 = 1/\gamma^2$ is the surface coverage (number of grafted polymer chains per unit area), where s is the mean-distance between the grafted chains, and $\Gamma_2^* = R_c b^2$ denotes some threshold that indicates the passage from the mushroom to brush regimes, with the gyration-radius of a single swollen polymer chain, $R_c = bN^{3/5}$. There, Γ is the absolute temperature and k_B is the Boltmann's constant. In this work, we are interested rather in the brush-regime, with $\Gamma > \Gamma^*$. The mushroom regime corresponds to the condition $\Gamma < \Gamma^*$. Then, there is a competition between the attractive interaction that exists even in the absence of the polymer and the repulsive one that results from the excluded volume forces.

Notice that the surface coverage is simply proportional to the volume fraction of the intercalated polymer between the clay-sheets. It is then natural to consider the phase-diagram in (Γ, d)-plane.

Now, equating the first derivative of the total free energy (1), with respect to the inter-sheet distance, d, at fixed surface coverage, gives the equilibrium relationship

$$\frac{d}{b} = \frac{A_H}{6\pi^2N^2k_BT} \times \frac{1}{(\Gamma_2^*)^2}.$$

Then the equilibrium distance decreases as the inverse of the squared surface coverage. Indeed, as the polymer-concentration is increased, the excluded volume force between monomers belonging to the grafted polymer chains is screened out.

In figure 2, we report the renormalized inter-sheet distance d/b, upon the dimensionless surface coverage, Γb^7.

![Figure 2: Renormalized inter-sheet distance, d/b, upon the dimensionless surface coverage, Γb^7.](image)

Comparison between experiment and theory

In this section, we compare the predictions of the theoretical model described above with some recent measurements of the interplate separation-values, d_{expt}, obtained from five samples using XRD analysis [14]. These results have been investigated by experiments on a three-component clay-polymer-water system. At fixed amount of clay ($m = 6g$), figure 3 shows the plot of d_{expt} values for Kaolinite, as a function of PEG6000 percentage.

![Figure 3: Comparison between experiment and theory](image)
As shown in this figure, there is a remarkable agreement between the experimental results and the theoretical predictions (figure 2). In fact, the inter-sheet distance decreases with the polymer-density, because of the screening effect caused by the PEG brushes leading to a significant decrease in the layer thickness, and therefore, strengthening the van der Waals attraction.

Conclusion

In this paper, we present a comparative analysis between recent experimental results giving the evolution of the inter-sheet distance, as a function of the PEG6000 percentage, and some theoretical model we recently developed. The latter is based on a balance between a van der Waals attractive interaction which tends to bring the clay-platelets close to each other and a repulsive energy induced by the end-adsorbed chains.

The main outcome of this study confirmed the decrease of the separation between clay-platelets with the polymer-density and to understand how small densities of PEG6000 chains interact with the clay-plates.

REFERENCES

Important: Articles are published under the responsibility of authors, in particular concerning the respect of copyrights. Readers are aware that the contents of published articles may involve hazardous experiments if reproduced; the reproduction of experimental procedures described in articles is under the responsibility of readers and their own analysis of potential danger.

Materials and Devices is an Open Access journal which publishes original, and peer-reviewed papers accessible only via internet, freely for all. Your published article can be freely downloaded, and self archiving of your paper is allowed and encouraged!

We apply « the principles of transparency and best practice in scholarly publishing » as defined by the Committee on Publication Ethics (COPE), the Directory of Open Access Journals (DOAJ), and the Open Access Scholarly Publishers Organization (OASPA). The journal has thus been worked out in such a way as complying with the requirements issued by OASPA and DOAJ in order to apply to these organizations soon.

Copyright on any article in Materials and Devices is retained by the author(s) under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which is favourable to authors.

Aims and Scope of the journal: the topics covered by the journal are wide. Materials and Devices aims at publishing papers on all aspects related to materials (including experimental techniques and methods), and devices in a wide sense provided they integrate specific materials. Works in relation with sustainable development are welcome. The journal publishes several types of papers: A: regular papers, L: short papers, R: review papers, T: technical papers, Ur: Unexpected and « negative » results, Conf: conference papers.

(see details in the site of the journal: http://materialsanddevices.co-ac.com)

We want to maintain Materials and Devices Open Access and free of charge thanks to volunteerism, the journal is managed by scientists for science! You are welcome if you desire to join the team!

Advertising in our pages helps us! Companies selling scientific equipments and technologies are particularly relevant for ads in several places to inform about their products (in article pages as below, journal site, published volumes pages, …). Corporate sponsorship is also welcome!

Feel free to contact us! contact@co-ac.com