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Abstract: Diffusion is a natural or artificial process that governs many phenomena in nature. The most 
known diffusion is the Brownian or normal motion, where the mean-square-displacement of the tracer (diffusive 
particle among others) increases as the square-root of time. It is not the case, however, for complex systems, 
where the diffusion is rather slow, because at small-scales, these media present an heterogenous structure. 
This kind of slow motion is called subdiffusion, where the associated mean-square-displacement increases in 

time, with a non trivial exponent, α, whose value is between 0 and 1. In this review paper, we report on new 
trends dealt with the study of the anomalous diffusion in Condensed Matter Physics. The study is achieved 
using a theoretical approach that is based on a Generalized Langevin Equation. As particular crowded systems, 
we choose the so-called Pickering emulsions (oil-in-water), and we are interested in how the dispersed droplets 
(protected by small solid charged nanoparticles) can diffuse in the continuous phase (water). Dynamic study is 
accomplished through the mean-square-displacement and the velocity-autocorrelation-function. Finally, a 
comparison with Molecular Dynamics data is made. 

Keywords: COMPLEX SYSTEMS, ANOMALOUS DIFFUSION, GENERALIZED LANGEVIN EQUATIONS, 

MEAN-SQUARE-DISPLACEMENT, VELOCITY-AUTOCORRELATION-FUNCTION, MOLECULAR DYNAMICS 

SIMULATION. 

I. Introduction 

The anomalous diffusion in various fields of science (physics, chemistry, biology, ecology...) has 
received much attention from a theoretical and experimental point of view. In fact, such a diffusion 
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appears in heterogeneous, disordered, fractal, colloidal and polymer systems, and in general, it 
produces within the complex systems containing entities that move on different scale-times. In 
opposition to the normal or Brownian diffusion, the anomalous diffusion is slower, due to an extreme 
difficulty that a particle (tracer) moves in a complex structure. This kind of diffusion is usually referred 
to as subdiffusion, and it is characterized by a mean-square-displacement (MSD) that behaves as: 

W(t) ≡ 〈(𝐱(t) − 𝐱(0))
2

〉 = 2Dαtα, with 0 < α < 1. This large-time behavior then deviates from the 

linear dependence on time found for the Brownian motion 
[1-3]

. In expression above, 𝐱(t), represents 

the time-position of the random walker, and the generalized diffusion coefficient, Dα, also called 

"fractional diffusion coefficient", is expressed in length2/timeα unit. 
We emphasize that the subdiffusion is a feature of the crowded systems, where the trajectories of 

their mobile constituents are strongly correlated. Notice that the above scaling relation is valid for 
large-times, that is beyond some characteristic time depending on the specific details of the diffusion 
process and the structure of the host medium. In general, a particle is said to be subdiffusive if the 
condition W(t)/t → 0, for t → +∞, is satisfied (very slow diffusion). This explains why the anomalous 
exponent, 𝛼, must be in the interval 0 < α < 1. 

It is noted that the subdiffusive transport appears in a variety of systems, such as the random-walk 
in fractal structures 

[2]
, fractional-time Brownian motion 

[4]
, living systems 

[5]
, charge carrier transport in 

amorphous semiconductors 
[6,7]

, NMR diffusometry on percolation structures 
[8]

, and the motion of a 
colloid in a polymer network 

[9]
. For example, for diffusion in fractal structures, α = 2/dw, where 

dw > 2 is the walk-dimension (dw = 2df/ds, where df and ds are the fractal and spectral dimensions, 

respectively), and for the fractional-time Brownian motion, α = 2H, where 𝐻 is the Hurst index. 

Examples of enhanced diffusion (α > 1) include tracer particles in vortex arrays in a rotating flow 
[10]

, 
layered velocity fields 

[11]
, and Richardson diffusion 

[12]
. The case 1 < α < 2 refers to superdiffusion 

(turbulent plasmas, Levy-flights, transport in polymers), α = 2, to ballistic diffusion (optical traps), and 

α = 3, to Richardson diffusion (atmospheric turbulence). The subdiffusion or superdiffusion exponent, 

𝛼, is not a universal quantity, but mainly depends on the pertinent parameters that control the 
phenomenon. As we shall see below, for the subdiffusion of the clothed droplets of Pickering 
emulsions, this exponent shall depend on their size, density and surface charge, and the salt-
concentration. 

Anomalous diffusion is a subject which has been extensively studied, especially in the past decade 
by using the so-called Generalized Langevin Equation (GLE) (with memory) 

[13,14–19]
. The last has 

been introduced by Kubo 
[20]

, as a generalization of the standard Langevin equation describing the 
Brownian or normal diffusion. Another useful approach to the anomalous diffusion is based on the 
fractional diffusion equation 

[21-23]
), fractional Fokker–Planck equation 

[21,24]
, generalized Chapman-

Kolmogorov equation 
[25]

 and fractional generalized Langevin equation 
[26,27]

.  
In their seminal paper, Mainardi and Pironi 

[28]
 had introduced a fractional Langevin equation taking 

into account the retarding effects due to hydrodynamic backflow and showed that it is a particular 
case of GLE. These equations can be analyzed by using the properties and asymptotic behaviors of 
Mittag-Leffler (M-L) functions 

[29-41]
.  

For the reader, an exhaustive list of other important developments of the subject can be found in 
Ref. [42].  

In this paper, we show how GLE can be applied to study the sub-diffusion phenomenon within 
particular complex systems which are Pickering emulsions (PEs) 

[43,44]
, and compare results from this 

equation to Molecular Dynamics (MD) data 
[45]

. This computational method was introduced by Alder 
and Wainwright 

[46]
, in order to study the structure and dynamics of liquids. 

PEs are dispersions presenting, very often, as oil-in-water (O/W), water-in-oil (W/O) or double 
emulsion water-oil-water (W/O/W). These dispersions are stabilized by an addition of small solid 
(organic or inorganic) particles that act as emulsifiers, instead of the surfactant molecules 

[47-50]
. These 

particles that act as emulsifiers are of nanometric size, while the stabilized droplets are as small as 
few micrometers diameter. The stabilization of larger droplets (few millimeters diameter) is possible as 
well, using micron-sized solid particles. The stabilization of the dispersed droplets within PEs is 
ensured by a strong adsorption of the solid nanoparticles at their surfaces. In contrary to surfactants, 
where the adsorption is rather dynamic (reversible), that of the charged solidparticles is irreversible 
and sufficiently strong, with a very high adsorption energy, between kBT and 108kBT, where kBT is the 

thermal energy. Here, kB is the Boltzmann's constant and T is the bath temperature. Of course, such 
an energy mainly depends on the value of the wetting (or contact) angle and the droplet-radius 

[50]
. 
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The anchoring of the solid particles emanates from a partial wetting of the surface of the charged solid 
particles by water and oil. 

Due to their remarkable properties, such as high stability with respect to coalescence and their 
recent use in nanotechnology leading to the creation and the characterization of the nano-scale 
structures in new ways, PEs have been the subject of many studies, both from experimental and 
theoretical point of views. In addition, they can serve as templates for the advanced materials 

[51,52]
, as 

Janus colloids 
[53]

, composite particles 
[54-61]

 and colloidosomes 
[62-64]

. 
PEs are heterogenous liquids which present as a dispersion of droplets of some liquid (dispersed 

phase) in another one (continuous phase). The two liquids are not chemically and physically 
compatible. By a mechanical mixing of the emulsion, each droplet becomes surrounded by discrete 
nanoparticles arranged on its surface. For the study of PEs, the clothed droplets can be regarded as 
charged soft-colloids 

[65]
. These charged droplets are subject to an anomalous diffusion as observed 

by MD simulations 
[45]

, and we are interested in how they really move using a GLE approach. The 
dynamics of these droplets are studied through two main quantities, which are MSD and the velocity-
autocorrelation-function (VACF). As we shall see below, for an appropriate choice of the memory-
function, the solutions to GLE express themselves in terms of M-L functions.  

The remaining of the presentation proceeds as follows. In the first section, we present a general 
dynamic theory, based on a GLE. A comparison between the results from this theory with MD data is 
the aim of the third section. Finally, some concluding remarks are drawn in the last section.  
 

II. Dynamic theory  

Consider a given particle, termed tracer or random walker, which executes a diffusion movement in 
the host medium. The raised question is how this random walker diffuses in the host medium, beyond 
some characteristic time we will precise below. In this time-regime, the random walker (target) feels to 
be trapped in a cage formed by the surrounding particles (traps), and then, it cannot escape from this 
cage, except after a long-time. We denote by Nc, the average-number of traps around the considered 
random walker. Consequently, the presence of the traps makes difficult such a diffusion process, and 
then, the random walker executes rather a subdiffusion, characterized by an anomalous exponent, α. 
The latter depends essentially on the nature of the random process and that of the host medium.  

The basic dynamic quantities of our interest are MSD, 〈(𝐱(t) − 𝐱(0))
2

〉 ≡ W(t), and VACF, 

〈𝐯(t). 𝐯(0)〉 ≡ cvv(t). They are related by  
 

W(t) = 2 ∫ dt′(t − t′)cvv(t′),    
t

t0
cvv(t) =

1

2

d2W(t)

dt2   (1) 

 

To investigate quantitatively the cage effect and the subdiffusion phenomenon, the 

starting point is a GLE developed in the past by Kubo [20] and by Zwanzig [66]. Then, GLE 

describing the motion of the random walker reads 
 

m
d𝐯(t)

dt
= −m ∫ dt′γ(t − t′)𝐯(t′)

t

0
+ 𝛏(t)  (2) 

 

Here, γ(t) is the memory-function that expresses a retardation to friction. The random force, 𝛏(t), 
satisfies 
 

〈𝛏(t)〉 = 𝟎 , 〈𝛏(t). 𝛏(0)〉 = mkBTγ(t) .    〈𝐯(0). 𝛏(t)〉 = 0 (3) 

 
For viscous colloidal solutions, the particle acceleration vanishes, and in this case, GLE equation 
reads 
 

−m𝐯0δ(t) = −m ∫ dt′γ(t − t′)𝐯(t′)
t

0
+ 𝛏(t) (4) 

 

where v0 = |𝐯0| = √2kBT/m is the initial velocity of the tracer and the stochastic force, 𝛏(t), also 

satisfies relations (3).  
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Assume, now, that the memory-function has the form 
 

γ(t) = γ0δ(t) +
γα

Γ(1−α)
t−α               (0 < α < 1)  (5) 

 
Here, γ0 and γα are two positive constants, Γ(x) is the Euler gamma function and δ(t) 
represents the Dirac-distribution. Using the Laplace-transform techniques together with 

relations (3), we find that MSD and VACF, in the non-inertial regime, are given by 

 

W(t) = 2
kBT

mγ0
tE1−α,2 (− (

t

τ
)

1−α

)   
   (6) 

 

 

 

 

with the Heaviside step-function, θ(x). In these expressions, Eσ,τ(x) denotes the two-

parameter M-L function [29]. There, τ = (γ0/γα)1/(1−α) is a time-scale.  

For small-times, in comparison with the characteristic one, τ, MSD and VACF behave, 

respectively, as 

 

 

 

 

 

 

Then, at these time-scales, the random walker executes a Brownian (normal) diffusion, 

with the usual diffusion coefficient, D0 = kBT/mγ0. For large-times, compared to τ, we find 

 
W(t) = 2Dαtα                          (𝑡 ≫ 𝜏)  (10) 

 
cvv(t) = α(α − 1)Dαtα                   (t ≫ τ) (11) 

 

with 
 
 
 
 

 

which denotes the generalized diffusion coefficient. 
 

III. Comparison with MD simulations 
 
For the description of the dynamic properties of PEs, using MD method, the equations of motion are 
solved in the canonical ensemble using the Velocity Verlet Algorithm (VVA) 

[67]
, with the Thermostat of 

Berendsen 
[68]

, in order to keep the temperature constant. In addition, periodic boundary conditions 
are applied to remove the surface effects and simulate an infinite emulsion. In the following, it will be 

convenient to use dimensionless units, where the length unit is σ, time in units of τ = σ√M/ε, where M 

is the oil-droplet mass and ε is the depth of the interaction potential, kBT is the energy unit, and 

L0 = N × (6V/πN)1/3 is the box-size, where N is the number of the clothed oil-droplets, and V is the 

volume of simulation box (in periodic conditions). MD simulations 
[45]

 where carried out with 1728 oil-

droplets and the dimensionless time-step for VVA is chosen to be 0.05. The last typical value of step-
time is that usually adopted in studying the colloidal solutions from MD simulations.  

Discussion on dynamics of PEs was made 
[45]

 varying the pertinent factors, as the surface charge 
of oil-droplets, and their density and the concentration of the added salt.  
 

cvv(t) =
kBT

mγ0

d2

dt2 [tE1−α,2 (− (
t

τ
)

1−α

) θ(t)]  
(7) 

W(t) = 2D0 t                        (t ≪ τ)  (8) 

cvv(t) = D0δ(t)                    (t ≪ τ)  (9) 

𝐷𝛼 =
𝐷0

Γ(𝛼+1)
  (12) 
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Charge effects 
 
The first goal was the quantification of the influence of the charge carried by the oil-droplets on their 
dynamic properties 

[45]
. The size of the oil-droplets, their reduced number density and the salt-

concentration were fixed to the values: σ = 20000 Å, ρ∗ = 0.0020 and cs = 2.91 μM. But the valence, 

Z, was varied from 1000 to 4500.  
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Figure 1: MSD versus dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the oil-droplet 

surface charge, with the fixed parameters: 𝛔 = 𝟐𝟎𝟎𝟎𝟎 Å, 𝛒∗ = 𝟎. 𝟎𝟎𝟐𝟎 and 𝐜𝐬 = 𝟐. 𝟗𝟏 𝛍𝐌. 

 
Figure 1 shows the log-log plot of the reduced MSD upon dimensionless time, t/τ, for various values of 
the surface charge. Such a figure clearly shows the existence of two time-regimes. For early times, 
the random walker executes a normal diffusion, independently of the value of the surface charge. This 
agrees with the theoretical behavior, relation (8). Above some known characteristic time, it executes 
rather a subdiffusion, and MSD behaves as W(t)~Dαtα, with an average subdiffusion exponent 

αc = 0.418. This result is in perfect agreement with the theoretical behavior, relation (10). As already 

shown 
[45]

, both anomalous diffusion exponent, α, and fractional diffusion coefficient, Dα, decrease 
progressively with the surface charge. As the later is augmented, the correlations between the oil-
droplets become stronger, and consequently, one assists to a slow dynamic. 

Figure 2 indicates the time-variation of VACF, for the same values of the surface charge. The 
abrupt increase of this function, at small-times, can be explained by formula (9) replacing the Dirac-

distribution δ(t) by a very narrow Gaussion function, that is: δ(t) → (2πσ)−1/2exp(−t2/2σ), with a very 

small time-scale σ. For large-times, VACF goes to zero, in agreement with theoretical formula, relation 
(11).  
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Figure 2: VACF versus dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the oil-droplet 

surface charge, with the fixed parameters: 𝛔 = 𝟐𝟎𝟎𝟎𝟎 Å, 𝛒∗ = 𝟎. 𝟎𝟎𝟐𝟎 and 𝐜𝐬 = 𝟐. 𝟗𝟏 𝛍𝐌. 

 

Density effects 

 

The second goal was the study of the influence of the density of the clothed oil-droplets on their 

dynamics 
[45]

, fixing their surface charge and size, and the salt-concentration to the values: Z =
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2000, σ = 20000 Å and cs = 2.91 μM. 

Figure 3 shows the log-log plot of MSD, versus dimensionless time, t/τ, for various values of the 
droplet-density. As above, this MSD exhibits two time-regimes: normal, with a density-dependent 
diffusion coefficient, and subdiffusive, with an average subdiffusion exponent, αd = 0.432. This is in 
good agreement with the theoretical formulae (8) and (10). 
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Figure 3: MSD versus dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the oil-droplet 

density, with the fixed parameters: 𝐙 = 𝟐𝟎𝟎𝟎, 𝛔 = 𝟐𝟎𝟎𝟎𝟎 Å and 𝐜𝐬 = 𝟐. 𝟗𝟏 𝛍𝐌. 

 
Figure 4 indicates the variation of VACF upon time, for the same parameters as before. The time-
behavior of this dynamic property agrees well with the theoretical predictions, relations (9) and (11).   
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Figure 4: VACF versus dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the oil-droplet 

density, with the fixed parameters: 𝐙 = 𝟐𝟎𝟎𝟎, 𝛔 = 𝟐𝟎𝟎𝟎𝟎 Å and 𝐜𝐬 = 𝟐. 𝟗𝟏 𝛍𝐌. 
 
 

Salt-concentration effects 
 
A quantitative investigation of the effects of the salt-concentration, cs, on the oil-droplets dynamics 

was achieved in Ref. [45], fixing the remaining parameters to the values: Z = 500, σ = 5000 Å, and 
ρ∗ = 0.0020.  
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Figure 5: MSD versus dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the salt-

concentration, with fixed parameters: 𝐙 = 𝟓𝟎𝟎, 𝛔 = 𝟓𝟎𝟎𝟎 Å and 𝛒∗ = 𝟎. 𝟎𝟎𝟐𝟎. 
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Figure 6: VACF versus the dimensionless time, 𝐭/𝛕, in log-log scale, for various values of the salt-

concentration, with fixed parameters: 𝐙 = 𝟓𝟎𝟎, 𝛔 = 𝟓𝟎𝟎𝟎 Å and 𝛒∗ = 𝟎. 𝟎𝟎𝟐𝟎. 

 
Figures 5 and 6 show the time-variation of MSD and VACF, respectively. Also, in this case, MD data 

are in good agreement with theory, relations (8) to (11). In particular, at large-time, MSD exhibits a 

subdiffuse behavior with an average exponent 𝛼𝑠 = 0.467.  

 

III. Conclusion 

 
In this presentation, we focus on a quantitative dynamic study of the subdiffusion phenomenon within 
crowded systems, as Pickerings emulsions, which are stabilized by a strong irreversible adsorption of 
charged solid nanoparticles on the surface of the dispersed oil-droplets.  

As we have shown above, the subdiffusion with complex systems may be approched well using a 
non-inertial generalized Langevin equation. Dynamic properties were studied through two important 
physical quantities, which are MSD and VACF. This equation was solved exactly with an appropriate 
choice of the memory-function, whose solution is expressed in terms of Mittag-Leffler functions.  

For Pickering emulsions, it was demonstrated that the diffusion of a given oil-droplet is normal, at 
short-time, and subdiffusive, at large-time, with an anomalous exponent between 0 and 1, and the 
theoretical predictions were found to be in perfect agreement with very recent MD simulations 

[10]
. 

An important question to ask is how particles that are embeded on the surface of a crowded 
system, can diffuse in time. Such a question was ensured in the case of fluid or polymerized 
membranes 

[69]
 and the oil-droplets of a Pickering emulsion 

[70]
. The main result is that, the random 

walker executes a subdiffusion, at short-time, followed by a saturation regime, at infinite time.  
Finally, it will be interesting to extend these extensive dynamic studies to the situation where the 

diffusing particles have arbitrary shapes and forms. 
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