Chap. 21 - Experimental methods to study clay minerals and perspective applications of Fluorohectorite





Fluorohectorite is a synthetic 2:1 layer smectite clay where the presence of exchangeable cations located between water molecules in the interlayer space allows for expansion of the crystal lattice. This swelling property is extremely relevant to many applications including water treatment, bioactive molecules intercalation (drug delivery), soil remediation, CO2capture as well as extra-terrestrial environment studies. In the present chapter, the aim is to discuss why Fluorohectorite can be in particular advantageous for many applications where retention of big volumes is an issue. We will also discuss on the main experimental techniques used to study these materials. 

Author Biography

Heloisa N. BORDALLO, Niels Bohr Institute (H.C. Ørsted Institute, bldg. D) University of Copenhagen

The unifying theme of my research has been to understand the effects of structural changes on the physical properties principally those governing dynamics in, and induced around, a material. The sequence of topics I worked on evolved from luminescent impurities in ionic crystals to other classes of materials; ferroelectrics, colossal magnetoresistance, molecular magnets, cement paste, clays, and then to systems of biological significance. As a consequence of this development of scientific interest, I have been trained in a broad range of experimental and computational techniques, starting with optical spectroscopy and proceeding to Raman, infrared, elastic and inelastic neutron scattering, X-rays and synchrotron radiation.

I have sought to develop links to strong collaborators at the international level and have being engaged on promoting neutron scattering as a technique that possesses the ability to answer important questions to physicists, chemists, material scientists, and biologists.


S.B. Hendricks, Zeitschrift für Kristallographie, vol. 959, p 247 [1936]

H. H. Murray, Appl Clay Sci., vol. 17, p. 207 [2000]

D. A. Laird, C. Shang, Clays Clay Miner., vol. 45, p. 681 [1997]

D. L. Sparks, in Environmental Soil Chemistry, Academic Press Inc, UK [1995]

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, J. Breu, Langmuir, vol. 32, p 10582 [2016]

S. Mukherjee, The Science of Clays, Applications in Industry, Engineering, and Environment, Springer Verlag, Germany [2013]

E. Eslinger and D. Pevear, in Clay Minerals for Petroleum Geologists and Engineers, SEPM Short Course Notes n° 22, ix + 405 pp. Society of Economic Paleontologists and Mineralogists, Tulsa [1988].

F. Bergaya, G. Lagaly, M. Vayer, Cation and Anion Exchange, in Handbook of Clay Science, Elsevier, The Netherlands [2013]

L. Delavernhe, M. Pilavtepe, K. Emmerich, Appl Clay Sci., vol. 151, p 175 [2018]

M. Stöter, D. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, J. Breu, Langmuir, vol. 29, p1280 [2013]

D. Carroll, Geol Soc Am Bull., vol. 70, p. 749 [1959]

H. Kalo, W. Milius, J. Breu, RSC Advances, vol. 2, 8452 [2012]

H Li, T Kang, B Zhang, J Zhang, J. Ren, Comput. Mater. Sci., vol 117, p 33 [2016]

K. M. Dontsova, L. D. Norton, C. T. Johnston, J. M. Bigham, Soil Sci. Soc. Am. J., vol 68, p 1218 [2004]

J.M. Cases, I. Berend, M. Francois, J.P. Uriot, L.J. Michot, F. Thomas, Clays Clay Miner., vol. 45, p 8 [1997]

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, T. U. Probst, Chem. Mater., vol. 13, p 4213 [2001]

M. Daab, N. J. Eichstaedt, C. Habel, S. Rosenfeldt, H. Kalo, H. Schießling, S. Förster, J. Breu, Langmuir, vol. 34, p 8215 [2018]

G. J. da Silva, J. O. Fossum, E. DiMasi, K. J. Maloy, S. B. Lutnaes, Phys. Rev. E, vol. 66, p 011303 [2002]

M. Ziadeh, B. Chwalka, H. Kalo, M. R. Schutz And J. Breu, Clay Minerals, vol. 47, p 341 [2012]

B. Dazas, B. Lanson, J. Breu, J.-L. Robert, M. Pelletier, E. Ferrage, Micropor. Mesopor. Mat., vol. 181, p 233 [2013]

M. Jaber, S. Komarneni, C.H. Zhou, Synthesis of Clay Minerals, in Handbook of Clay Science, Elsevier, The Netherlands, p 223 [2013]

B. Ruzicka, E. Zaccarelli, Soft Matter, vol. 7, p 1268 [2011]

N.I. Ringdal, D.M. Fonseca, E.L. Hansen, H. Hemmen & J.O. Fossum Phys. Rev. E vol. 81, p 041702 [2010]

H. Hemmen, N. I. Ringdal, E. N. De Azevedo, M. Engelsberg, E. L. Hansen, Y. Meheust, J. O. Fossum, K. D. Knudsen, Langmuir, vol. 25, p 12507 [2009]

E. L. Hansen, H. Hemmen, D. M. Fonseca, C. Coutant, K. D. Knudsen, T. S. Plivelic, D. Bonn, J. O. Fossum, Sci. Rep., vol. 2, p 618 [2012],

D.M.Fonseca, Y. Meheust, J.O. Fossum, K.D. Knudsen, K.P.S. Parmar, Phys.Rev.E, vol. 79, p 021402 [2009]

H Kalo, MW Möller, M Ziadeh, D Dolejš, J Breu, Appl Clay Sci, vol. 48, p 39 [2010]

M. W. Möller, T. Lunkenbein, H. Kalo, M. Schieder, D. A. Kunz, J. Breu, Adv. Mater., vol. 22, p 5245 [2010]

H. Kalo, M. W. Möller, D. A. Kunz, J. Breu, Nanoscale, vol. 4, p 5633 [2012]

M.A.S. Altoé, L. Michels, E.C.d. Santos, R. Droppa Jr, G. Grassi, L. Ribeiro, K.D. Knudsen, H.N. Bordallo, J.O. Fossum, G.J. da Silva, Appl. Clay Sci., vol. 123, p 83 [2016]

R. P. Tenorio, M. Engelsberg, J. O. Fossum, G. J. da Silva, Langmuir, vol. 26, p 9703 [2010]

H. Hemmen, L. R. Alme, J. O. Fossum, Y. Meheust, Phys. Rev., vol. 82, p 036315 [2010]

R. P. Tenorio, L. R. Alme, M. Engelsberg, J. O. Fossum, F. Hallwass, J. Phys. Chem. C, vol. 112, p 575 [2008]

L. Michels, Y. Méheust, M. A. Altoé, É. C. dos Santos, H. Hemmen, R. Droppa Jr, J. O. Fossum, G. J. da Silva, Phys. Rev. E, vol. 99, p 013102 [2019]

L. Michels, L. Ribeiro, M. S. Pedrosa Mundim, M. H. Sousa, R. Droppa, Jr., J. O. Fossum, G. J. da Silva, K. C. Mundim, Appl. Clay Sci., vol. 96, p 60 [2014]

E. Ferrage, Clay Clay Miner., vol. 64, p 348 [2016]

B. Dazas, B. Lanson, A. Delville, J. L. Robert, S. Komarneni, L. J. Michot, E. Ferrage, ‎J. Phys. Chem. C, vol. 119, p 4158 [2015]

F. Salles, O. Bildstein, J. Douillard, M. Jullien, J. Raynal, H. Van Damme, Langmuir, vol. 26, p 5028 [2010]

K. D. Knudsen, J. O. Fossum, G. Helgesen, M. W. Haakestad, Physica B, vol. 352, p 247 [2004]

K. D. Knudsen, J. O. Fossum, G. Helgesen, V. Bergaplass, J. Appl. Crystallogr., vol. 36, p 587 [2003]

M. L. Martins, W.P. Gates, L. Michot, E. Ferrage, V. Marry and H.N. Bordallo, Appl Clay Sci., vol. 96, p 22 [2014]

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. r. Senker, J. Breu, Langmuir, vol. 29, p 1280 [2013]

N. Skipper, A. Soper, and M. Smalley, J. Phys. Chem., vol. 98, p 942 [1994]

T. J. Tambach, P. G. Bolhuis, E. J. Hensen, B. Smit, Langmuir, vol. 22, p 1223 [2006]

T. J. Tambach, E. J. M. Hensen, B. Smit, J. Phys. Chem. B, vol. 108, p 7586 [2004]


M. Benhamou, OAJ Materials and Devices, vol 3, p 0730 [2018]

J. Fossum, Y. Méheust, K. Parmar, K. Knudsen, K. Måløy, D. Fonseca, EPL, vol. 74, p 438 [2006]

C. Pitteloud, D.H. Powell, H.E. Fischer, Phys. Chem. Chem. Phys., vol,3, p 556 [2001]

G. Tiwari, R. Tiwari, S. Bannerjee, L. Bhati, S. Pandey, P. Pandey, B. Sriwastawa, Int. J. Pharm. Investig., vol. 2, p 2 [2012]

H. C. Ansel, N. G. Popovich, L. V. Allen, in Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed., Lippincott Williams & Wilkins [2011]

K. Park, J. Control. Release, vol. 190, p 3 [2014]

A. Rivera, L. Valdés, J. Jiménez, I. Pérez, A. Lam, E. Altshuler, L. C. De Ménorval, J. O. Fossum, E. L. Hansen, Z. Rozynek, Appl. Clay Sci., vol. 124–125, p 150 [2016]

F. E. K. Okaikue-Woodi, S. E. Kelch, M. P. Schmidt, C. E. Martinez, R. E. Youngman, L. Aristilde, J. Colloid Interface Sci., vol. 513, p 367 [2018]

P. Komadel, J. Madejova, M. Janek, W. P. Gates, R. J. Kirkpatrick, J. W. Stucki, Clays Clay Miner., vol. 44, p 228 [1996]

P. Komadel, J. Madejová, Dev. Clay Sci., vol. 1, p 263 [2006]

E. C. dos Santos, W. P. Gates, L. Michels, F. Juranyi, A. Mikkelsen, G. J. Silva, J. O. Fossum, H. N. Bordallo, Appl. Clay Sci., vol. 166, p 288 [2018]

L. Valdés, D. Hernández, L. C. de Ménorval, I. Pérez, E. Altshuler, J. O. Fossum, A. Rivera, Eur. Phys. J. Spec. Top., vol. 225, p 767 [2016]

E. C. dos Santos, Z. Rozynek, E. L. L. Hansen, R. Hartmann-Petersen, R. N. N. Klitgaard, A. Løbner-Olesen, L. Michels, A. Mikkelsen, T. S. S. Plivelic, H. N. N. Bordallo, J. O. O. Fossum, RSC Adv., vol. 7, p 26537 [2017]

L. Valdés, I. Pérez, L. C. de Ménorval, E. Altshuler, J. O. Fossum, A. Rivera, PLoS One, vol. 12, p e0187879 [2017]

D. Hernández, L. Lazo, L. Valdés, L. C. de Ménorval, Z. Rozynek, A. Rivera, Appl. Clay Sci., vol. 161, p 395 [2018]

Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E., Carrasco, L. R. Nat. Commun., vol. 9, p 4052 [2018]

Intergovernmental Panel on Climate Change, 2018: Global warming of 1.5 °C, in an IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Editors V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield, In press

D. W. Dockery, C. A Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr, F. E. Speizer, N. Engl. J. Med. vol. 329, p. 1753 [1993]

J. Fischer, R. Dyball, I. Fazey, C. Gross, S. Dovers, P. R. Ehrlich, R. J. Brulle, C. Christensen, R. J. Borden, Front. Ecol. Environ. vol. 10, p 153 [2012]

Y. Zeng, R. Zou, Y. Zhao, Adv. Mater., vol. 28, p 2855 [2016]

D. Li, H. Furukawa, H. Deng, C. Liu, O. M. Yaghi, D. S. Eisenberg, Proc. Natl. Acad. Sci., vol. 111, p 191 [2014]

C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Environ. Sci. Technol., vol. 45, p 9101 [2011]

S. J. Rukmani, T. P. Liyana-arachchi, K. E. Hart, C. M. Colina, Langmuir, vol. 34, p. 3949 [2018]

J. Liu, X. Liu, Y. Sun, C. Sun, H. Liu, L. A. Stevens, K. Li, C. E. Snape, Adv. Sustain. Syst., vol. 2, p. 1700115 [2018]

Y. Ren, R. Ding, H. Yue, S. Tang, C. Liu, J. Zhao, W. Lin, B. Liang, Appl. Energy, vol. 198, p 250 [2017]

L. P. Cavalcanti, G. N. Kalantzopoulos, J. Eckert, K. D. Knudsen, and J. O. Fossum, Sci. Rep., vol. 8, p. 11827 [2018]

L. Michels, J. O. Fossum, Z. Rozynek, H. Hemmen, K. Rustenberg, P. A. Sobas, G. J. da Silva, Sci. Rep., vol. 5, p. 8775 [2015]

A. Chakraborty, A. Achari, M. Eswaramoorthy, and T. K. Maji, Chem. Commun., vol. 52, p 11378 [2016]

D. R. Cole, A. A. Chialvo, G. Rother, L. Vlcek, P. T Cummings, Philos. Mag. vol 90, p 2339 [2010]

H. Furukawa, N. Ko, Y. Go, N. Aratani, S.B Choi, E. Choi, A.O. Yazaydin, R.Q. Snur, M. O'Keeffe, J. Kim, O. Yaghi, Science, vol. 329, p 424 [2010]

K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm T.-H. Bae, J. R. Long., Chem. Rev., vol. 112, p 724 [2012]

M. Cox, R. Mokaya, Sustain. Energy Fuels, vol. 1, p 1414 [2017]

S. Cavenati, C. A. Grande, A. E. Rodrigues, J. Chem. Eng. Data, vol. 49, p 1095 [2004]

P. R. Jeon, J. Choi, T. S. Yun, C. H. Lee, Chem. Eng. J., vol. 255, p 705 [2014]

A. Busch, S. Alles, Y. Gensterblum, D. Prinz, D. N. Dewhurst, M. D. Raven, H. Stanjek, B M. Krooss, Int. J. Greenh. Gas Control, vol. 2, p 297 [2008]

Y. H. Chen, D. L. Lu, Appl. Clay Sci., vol. 104, p 221 [2015]

A. A. Pribylov, S. Z. Muminov, I. A. Kalinnikova, L. G. Shekhovtsova, Colloid J., vol. 72, p 417 [2010]

L. Stevens, K. Williams, W. Y. Han, T. Drage, C. Snape, J. Wood, J. Wang, ., Chem. Eng. J., vol. 215, p 699 [2013]

V. N. Romanov, Int. J. Greenh. Gas Control, vol. 14, p 220 [2013]

Q. Rao, Y. Leng, J. Phys. Chem. C, vol. 120, p 2642 [2016]

H. T. Schaef, J. S. Loring, V. A. Glezakou, Q. R. Miller, J. Chen, A. T. Owen, ... C. Thompson, Geochim. Cosmochim. Acta, vol. 161, p 248 [2015]

H. Sun, H. Zhao, N. Qi, X. Qi, K. Zhang, Y. Li, Mol. Simul., vol. 43, p 1004 [2017]

C. Volzone, J. O. Rinaldi, J. Ortiga, Mater. Res., vol. 5, p 475 [2005]

W. Wang, J. Xiao, X. Wei, J. Ding, X. Wang, C. Song, Appl. Energy, vol. 113, p 334 [2014]

E. A. Roth, S. Agarwal, R. K. Gupta, Energy and Fuels, vol. 27, p 4129 [2013]

P. Sozzani, S. Bracco, A. Comotti, M. Mauri, R. Simonutti, P. Valsesia, Chem. Commun., vol. 18, p 1921 [2006]

E. Vilarrasa-García, J. A. Cecilia, M. Bastos-Neto, C. L. Cavalcante, D. C. S. Azevedo, E. Rodríguez-Castellón, Appl. Surf. Sci., vol. 410, p 315 [2017]

N. Loganathan, A. O. Yazaydin, R. J. Kirkpatrick, G. M. Bowers, J. Phys. Chem. C, vol 123, p 4848 [2019]

H. T. Schaef, N. Loganathan, G. M. Bowers, R. J. Kirkpatrick, A. O. Yazaydin, S. D Burton, … K. M. Rosso, ACS Appl. Mater. Interfaces, vol. 9, p 36783 [2017]

N. Loganathan, G. M. Bowers, A. O. Yazaydin, H. T. Schaef, J. S. Loring, A. G. Kalinichev, R. J. Kirkpatrick, J. Phys. Chem. C, vol. 122, p 4391 [2018]

N. Loganathan, G. M. Bowers, A. O. Yazaydin, A. G. Kalinichev, R. J. Kirkpatrick, J. Phys. Chem. C, vol. 122, p 23460 [2018]

D. M. Moore, R. C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, UK [1997]

E. Ferrage, B. Lanson, L. J. Michot, J-L. Robert. J. Phys. Chem. C, vol. 114, p. 4515 (2010).

J. Als-Nielsen, D. McMorrow. Elements of Modern X-ray Physics, 2nd Edition, Wiley, USA [2011]

P. Thompson, D. Cox, J. Hastings, J. Appl. Crystallogr, vol. 20, p 79 (1987).

T. H. De Keijser, J. I. Langford, E. J. Mittemeijer, A. B. P. Vogels, J. Appl. Crystallogr. vol. 15, p 308 (1982).

G. Williamson, W. Hall, Acta Metall., vol. 1, p 22 [1953]

G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Third Edit.; Cambridge University Press, UK [1978]

J. D. F. Ramsay, P. Lindner. J. Chem. Soc. Faraday Trans., vol. 89, p 4207 [1993]

P. D. Kaviratna, T. J. Pinnavaia, P. A. Schroeder, J. Phys. Chem. Solids, vol 57, p 1897 [1996]

E. DiMasi, J.O. Fossum, T. Gog, C. Venkataraman, Phys.Rev., E vol. 64, 061704 [2001]

H. Hemmen, E. L. Hansen, N. I. Ringdal, J.O. Fossum, Rev. cuba. fís. (Cuban J. of Phys.), vol. 29-1E, p 59 [2012]

C. V. Raman, K. S. Krishnan, Nature, vol. 121, p 501 [1928]

D. A. Long, Raman spectroscopy. McGraw-Hill, New York [1977]

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley and Sons, Ltd., West Sussex, vol. 8, p 224 [2004]

T. Kogure, Chapter 2.9 - Electron Microscopy, in Developments in Clay Science, Elsevier, The Netherlands [2013]


S. Petit, Fourier Transform Infrared Spectroscopy, in Handbook of Clay Science, Bergaya F, Theng BKG, Lagaly G, 1st ed. Elsevier, p 909 [2006]

J. Madejová, P. Komadel, Clays Clay Miner., vol. 49, p 410 [2001]

B. B. Zviagina, D. K. Mccarty, J. Srodon, V. A. Drits, Clays Clay Miner., vol. 52, p 399 [2004]

L. Vaculíková, E. Plevová, Acta Geodyn Geomater, vol. 2, p 167 [2005]

E. W. Maina, H. J. Wanyika, A. N. Gacanja, Chem Mater Res., vol. 7, p 43 [2015]

T. Kloprogge, Raman Spectroscopy of Clay Minerals, in Develop. in Clay Sci., Elsevier, The Netherlands, vol. 8 p 150 [2017]

R. L. Frost, L. Rintoul, Appl Clay Sci., vol. 11, p 171 [1996]

M. Ritz, L. Vaculíková, J. Kupková, E. Plevová, L. Bartoňová, Vib Spectrosc., vol. 84, p 7 [2016]

M. F. Brigatti, E. Galán, B. K. G. Theng, Dev Clay Sci., vol. 5 [2013]

A. Wang, J. J. Freeman, B. L. Jolliff, J. Raman Spectrosc., vol 46, p 829 [2015]

M. Pelletier, L. Michot, B. Humbert, B. Odile, J. B. de Lacaillerie, J. L. Robert, Am Mineral., vol. 88, p 1801 [2003]

C. Rinaudo, M. Roz, V. Boero, M. Franchini-Angela, Neues Jahrbuch für Mineralogie – Monatshefte, vol. 2004, p 537 [2004]

P. M. Dias, D. L. A. de Faria, V. R. L. Constantino, J Incl Phenom Macrocycl Chem., vol. 38, p 251 [2000]

S. S. Hou, F. L. Beyer, K. Schmidt-Rohr, Solid State Nucl. Magn. Reson., vol. 22, p. 110 [2002]

H. N. Bordallo, L. P. Aldridge, G. Jock Churchman, W. P. Gates, M.T. F. Telling, K. Kiefer, P. Fouquet, T. Seydel, Simon A. J. Kimber, J. Phys. Chem. C, vol. 112, p 13982 [2008]

W. P. Gates, L. P. Aldridge, G. G. Guzman, R. A. Mole, D. Yu, G. N. Iles, A. Klapproth and H. N. Bordallo, Appl Clay Sci., vol. 147, p 97 [2017]

Y. Fukushima, T. Yamada, K. Tamura, K. Shibata, Appl Clay Sci., vol. 155, p 15 [2018]

V. Marry, E. Dubois, N. Malikova, S. Durand-Vidal, S. Longeville, J.Breu, Environ. Sci. Technol., vol. 45, p 2850 [2011]

C.P. Morrow, A. Ö. Yazaydin, M. Krishnan, G. M. Bowers, A. G. Kalinichev, R. J. Kirkpatrick, J. Phys. Chem. C, vol. 117, p 5172 [2013]

D. Presti, A. Pedone, G. Mancini, C. Duce, M. R. Tiné, V. Barone, Phys. Chem. Chem. Phys., vol. 18, p. 2164 [2015]

A. Botan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger J. Phys. Chem. C, vol. 114, p 14962 [2010]

G. J. Kearley, Spectrochim. Acta Part A Mol. Spectrosc., vol. 48, p 349 [1992]

A. J. Ramirez-Cuesta, Comput. Phys. Commun., vol. 157, p 226 [2004]

R. T. Cygan, L. L. Daemen, A. G. Ilgen, J. L. Krumhansl, T. M. Nenoff, J. Phys. Chem. C, vol. 119, p 28005 [2015]

A. Gerstmans, L. Urbanczyk , R. Jéröme, J.-L. Robert, J. Grandjean, Clay Miner., vol. 43, p 205 [2008]

L. Huve, L. Delmotte,P. Martin,R. Le Dred, J. Baron, D.Saehr, Clays Clay Miner., vol. 40, p 186 [1992]

J.-R. Butruille, T. J. Pinnavaia, Alumina pillared clays as alkylation catalysis, in Clays: Controlling the Environment. Proc. 10th Int. Clay Conf. Adelaide - Australia, G. J. Churchman, R. W. Fitzpatrick, R. A. Eggleton, CSIRO Publishing, Melbourne, Australia [1995]

J. Hougardy, W. E. Stone, J. J. Fripiat, J. Chem. Phys., vol. 64, p. 3840 [1976]




How to Cite

Michels-Brito, P. H., Michels, L., Hunvik, K. W. B., dos Santos, E. C., Pacáková, B., Cavalcanti, L. P., Knudsen, K. D., BORDALLO, H. N., & Fossum, J. O. (2022). Chap. 21 - Experimental methods to study clay minerals and perspective applications of Fluorohectorite. OAJ Materials and Devices, 5(2). Retrieved from