Organic materials based on thiophene and benzothiadiazole for organic solar cells. Computational investigations


  • Mohammed Bouachrine Moulay Ismail University of Meknes
  • Rched Kacimi Moulay Ismail University of Meknes
  • Mourad Chemek Faculty of Science of Monastir
  • Ahmed Azaid Moulay Ismail University of Meknes
  • Mohammed Bennani Moulay Ismail University of Meknes
  • Lahcen Bejjit ESTM, Moulay Ismail University of Meknes




In this paper, wepresent new organics chemical structures of pendant phenyl ester-substituted thiophene and benzothiadiazole based copolymers leading to donor (D)-acceptor (A) structure-types. Geometrics and photo-physical properties of the studied chemical structure are exploited in the further ground and excited-state. Theoretically, using the DFT and TD-DFT quantum chemical calculation implanted in Gaussian09 software, geometrical and electronic parameters such as the energy of HOMO and LUMO level, the Egap= EHomo- E Lumo and focused electronic parameters of the molecules were determined. It is obvious that the studied molecules show good photovoltaic properties. Thus, studied chemical structures are blended with acceptor compounds such as fullerene and PCBM derivatives in bulk-heterojunction solar cell. Quantic chemical calculations show that the studied compound present good electronic, optical and photovoltaic properties and can be used as potential electron donors in organic solar cells Heterojunction (BHJ).


R. Kacimi, T. Abram, M. Bourass, L. Bejjit, K. Alimi, M. Bouachrine, Molecular design of D–A–D conjugated molecules based on fluorene for organic solar cells, Optical and Quantum Electronics, 51 76 (2019).

X. Li, X. Zhang, J. Hua, H. Tian, Molecular engineering of organic sensitizers with o, p-dialkoxyphenyl-based bulky donors for highly efficient dye-sensitized solar cells, Molecular Systems Design & Engineering, 2 98-122 (2017).

L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Highly Efficient Nearâ€Infrared Organic Lightâ€Emitting Diode Based on a Butterflyâ€Shaped Donor–Acceptor Chromophore with Strong Solidâ€State Fluorescence and a Large Proportion of Radiative Excitons, Angewandte Chemie International Edition, 53 2119-2123 (2014).

Chaieb, L. Vignau, R. Brown, G. Wantz, N. Huby, J. François, C. Dagron-Lartigau, PL and EL properties of oligo (p-phenylene vinylene)(OPPV) derivatives and their applications in organic light-emitting diodes (OLED), Optical Materials, 31 68-74 (2008).

M. Gross, D.C. Müller, H.-G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, K. Meerholz, Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes, Nature, 405 661(2000).

S.-Y. Shao, J.-Q. Ding, L.-X. Wang, New applications of poly (arylene ether) s in organic light-emitting diodes, Chinese Chemical Letters, 27 1201-1208 (2016).

X. Zhang, H. Bronstein, A.J. Kronemeijer, J. Smith, Y. Kim, R.J. Kline, L.J. Richter, T.D. Anthopoulos, H. Sirringhaus, K. Song, Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer, Nature communications, 4 2238 (2013).

S. Yu, F. Liu, J. Yu, S. Zhang, C. Cabanetos, Y. Gao, W. Huang, Eco-friendly direct (hetero)-arylation polymerization: Scope and limitation, Journal of Materials Chemistry C, 5 29-40 (2017).

L. Verheyen, P. Leysen, M.-P. Van Den Eede, W. Ceunen, T. Hardeman, G. Koeckelberghs, Advances in the controlled polymerization of conjugated polymers, Polymer, 108 521-546 (2017).

P.H. Wöbkenberg, D.D. Bradley, D. Kronholm, J.C. Hummelen, D.M. de Leeuw, M. Cölle, T.D. Anthopoulos, High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synthetic Metals, 158 468-472 (2008).

A. Marrocchi, A. Facchetti, D. Lanari, S. Santoro, L. Vaccaro, Click-chemistry approaches to π-conjugated polymers for organic electronics applications, Chemical science, 7 6298-6308 (2016).

K. Gurunathan, A.V. Murugan, R. Marimuthu, U. Mulik, D. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices, Materials chemistry and physics, 61 173-191 (1999).

M.J. Khoshkholgh, F. Marsusi, M.R. Abolhassani, Density functional theory investigation of opto-electronic properties of thieno [3, 4-b] thiophene and benzodithiophene polymer and derivatives and their applications in solar cell, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136 373-380 (2015).

E. Kozma, M. Catellani, Perylene diimides based materials for organic solar cells, Dyes and Pigments, 98 160-179 (2013).

D.M. Shircliff, V.J. Pastore, M.L. Poltash, B.M. Boardman, Synthesis and characterization of pendant phenyl ester-substituted thiophene based copolymers, Materials Today Communications, 8 15-22 (2016).

H.J. Cho, Y.J. Kim, S. Chen, J. Lee, T.J. Shin, C.E. Park, C. Yang, Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers, Nano Energy, 39 229-237 (2017).

A.D. Becke, Densityâ€functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98 5648-5652 (1993).

R. Kacimi, T. Abram, L. Bejjit, M. Bouachrine, Compounds derived from flavonoids for photovoltaic applications. Computational chemical investigations; 5(3): 1009-1020 (2018).

R. Kacimi, T. Abram, L. Bejjit, M. Bouachrine, New organic materiel based on benzothiadiazole for Photovoltaic application Solar Cells, Materials Today: Proceedings, 13 1188-1196 (2019).

A.D. Becke, A new mixing of Hartree–Fock and local densityâ€functional theories, The Journal of chemical physics, 98 1372-1377 (1993).

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02. Gaussian Inc., Wallingford, CT, J. Chem. Phys, 2009.

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02; Gaussian, Inc: Wallingford, CT, 2009, There is no corresponding record for this reference, (2015).

T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, s 393 51–57 (2004).

Bhatta, M. Tsige, Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: A first-principles study, Polymer, 55 2667-2672 (2004).

S.S. Zade, M. Bendikov, Theoretical studies on thiophene-containing compounds, John Wiley & Sons: New York 2009.

R. Kacimi, T. Abram, W. Saidi, L. Bejjit, M. Bouachrine, New organic molecular based on Bis-Dipolar Diphenylamino-EndcappedOligo Aryl Fluorene Application for organic solar cells, Materials Today: Proceedings, 13 1178-1187 (2019).

Y. Li, D. Qian, L. Zhong, J.-D. Lin, Z.-Q. Jiang, Z.-G. Zhang, Z. Zhang, Y. Li, L.-S. Liao, F. Zhang, A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset, Nano Energy, 27 (2016) 430-438.

S. Kaya, C. Kaya, A new method for calculation of molecular hardness: a theoretical study, Computational and Theoretical Chemistry, 1060 66-70 (2015).

A. Gadisa, M. Svensson, M.R. Andersson, O. Inganäs, Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative, Applied Physics Letters, 84 1609-1611 (2004).

Y. He, Y. Li, Fullerene derivative acceptors for high performance polymer solar cells, Physical chemistry chemical physics, 13 1970-1983 (2011).

M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Progress in polymer science, 38 1929-1940 (2013).

A. Astefanei, O. Núñez, M.T. Galceran, Analysis of C60-fullerene derivatives and pristine fullerenes in environmental samples by ultrahigh performance liquid chromatography–atmospheric pressure photoionization-mass spectrometry, Journal of Chromatography A, 1365 61-71 (2014).

M.Y. Ivanov, M.V. Fedin, Nanoscale heterogeneities in ionic liquids: insights from EPR of spin probes, Mendeleev Communications, 28 565-573 (2018).

M. Amine, M. Hamidi, A. Amine, M. Bouachrine, Design of new small molecules based on 4, 7 (dithien-2-yl)-2, 1, 3-benzothiadiazole for bulk heterojunction solar cells: a DFT study, Journal of Materials Science and Engineering with Advanced Technology. Volume 10, Number 1, 2014, Pages 39-61, (2014).

A.S. Dudnik, T.J. Aldrich, N.D. Eastham, R.P. Chang, A. Facchetti, T.J. Marks, Tin-free direct C–H arylation polymerization for high photovoltaic efficiency conjugated copolymers, Journal of the American Chemical Society, 138 15699-15709 (2016).

Q. Zhu, X. Bao, J. Yu, D. Zhu, M. Qiu, R. Yang, L. Dong, Compact layer free perovskite solar cells with a high-mobility hole-transporting layer, ACS applied materials & interfaces, 8 2652-2657 (2016).

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, A polymer tandem solar cell with 10.6% power conversion efficiency, Nature communications, 4 1446 (2013).

D. Cagardová, M. Michalík, P. Poliak, V. Lukeš, Electronic structure and charge-transport properties of symmetric linear condensed bis-benzothiadiazole derivatives, Journal of Molecular Structure, 1175 297-306 (2019).

A. Azazi, A. Mabrouk, M. Chemek, D. Kreher, K. Alimi, DFT modeling of conjugated copolymers photophysical properties: Towards organic solar cell application, Synthetic Metals, 198 314-322 (2014).

G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design Rules for Donors in Bulkâ€Heterojunction Tandem Solar Cells Towards 15% Energyâ€Conversion Efficiency, Advanced Materials, 20 579-583 (2008).




How to Cite

Bouachrine, M., Kacimi, R., Chemek, M., Azaid, A., Bennani, M., & Bejjit, L. (2020). Organic materials based on thiophene and benzothiadiazole for organic solar cells. Computational investigations. OAJ Materials and Devices, 5(1). Retrieved from