Chap. 24 - Hybrid perovskites: Charge carrier recombination effects in photovoltaic devices

Authors

Keywords:

Hybrid perovskites, perovskite solar cells, charge carrier recombination, ionic-electronic conductivity, photovoltaics

Abstract

Hybrid lead halide perovskites emerged at the beginning of 2010s decade as one of the most promising materials for photovoltaic applications. Easy and low-cost solution-based fabrication processes can be used, obtaining perovskite solar cells (PSCs) with efficiencies above 20%. However, there still are some major issues to overcome, like stabiliddty, and the general understanding of the recombination mechanisms resHybrid lead halide perovskites emerged at the beginning of 2010s decade as one of the most promising materials for photovoltaic applications. Easy and low-cost solution-based fabrication processes can be used, obtaining perovskite solar cells (PSCs) with efficiencies above 20%. However, there still are some major issues to overcome, like stability, and the general understanding of the recombination mechanisms results particularly puzzling. In this chapter, an analysis is provided on most recent research results about the different mechanisms, location and relationships of charge carrier recombination in PSCs. After introducing the theoretical framework, including the main transport equations and relations with luminescence techniques, the radiative and non-radiative natures of recombination are commented and compared in terms of main contributions. Also, the effects of changing the perovskite composition and morphology are surveyed. The location of the recombination processes, whether in the bulk material or towards the interface, are tackled, as well as related features with the current-voltage hysteresis. On the latter, and along the complete chapter, the dual ionic-electronic conductivity of hybrid lead halide perovskites is particularly attended. ults particularly puzzling. In this chapter, an analysis is provided on most recent research results about the different mechanisms, location and relationships of charge carrier recombination in PSCs. After introducing the theoretical framework, including the main transport equations and relations with luminescence techniques, the radiative and non-radiative natures of recombination are commented and compared in terms of main contributions. Also, the effects of changing the perovskite composition and morphology are surveyed. The location of the recombination processes, whether in the bulk material or towards the interface, are tackled, as well as related features with the current-voltage hysteresis. On the latter, and along the complete chapter, the dual ionic-electronic conductivity of hybrid lead halide perovskites is particularly attended.

ybrid lead halide perovskites emerged at the beginning of 2010s decade as one of the most promising materials for photovoltaic applications. Easy and low-cost solution-based fabrication processes can be used, obtaining perovskite solar cells (PSCs) with efficiencies above 20%. However, there still are some major issues to overcome, like stability, and the general understanding of the recombination mechanisms results particularly puzzling. In this chapter, an analysis is provided on most recent research results about the different mechanisms, location and relationships of charge carrier recombination in PSCs. After introducing the theoretical framework, including the main transport equations and relations with luminescence techniques, the radiative and non-radiative natures of recombination are commented and compared in terms of main contributions. Also, the effects of changing the perovskite composition and morphology are surveyed. The location of the recombination processes, whether in the bulk material or towards the interface, are tackled, as well as related features with the current-voltage hysteresis. On the latter, and along the complete chapter, the dual ionic-electronic conductivity of hybrid lead halide perovskites is particularly attended.

References

J.-P. Correa-Baena et al., Energy Environm. Sci. 10 (2017), 710. https://doi.org/10.1039/C6EE03397K

H. J. Snaith, J. Phys. Chem. Lett. 4 (2013), 3623. https://doi.org/10.1021/jz4020162

A. Albadri et al., J. Phys. Chem. C 121 (2017), 24903. https://doi.org/10.1021/acs.jpcc.7b04766

Y. Hu et al., Adv. Energy Mater. 8 (2018), 1703057. https://doi.org/10.1002/aenm.201703057

J. Chen et al., ACS Appl. Mater. Interfaces 11 (2019), 4597. https://doi.org/10.1021/acsami.8b18807

M. Deepa et al., Phys. Chem. Chem. Phys. 19 (2017), 4069. https://doi.org/10.1039/C6CP08022G

S. Mahesh et al., Energy Environ. Sci. 13 (2020), 258. https://doi.org/10.1039/C9EE02162K

D. Sabba et al., J. Phys. Chem. C 119 (2015), 1763. https://doi.org/10.1021/jp5126624

C. H. Ng et al., Sci. Reports 8 (2018), 2482. https://doi.org/10.1038/s41598-018-20228-0

A. Zohar et al., ACS Energy Lett. 4 (2019), 1. https://doi.org/10.1021/acsenergylett.8b01920

Y. Yang et al., J. Phys. Chem. Lett. 6 (2015), 4688. https://doi.org/10.1021/acs.jpclett.5b02290

T. Handa et al., J. Phys. Chem. C 121 (2017), 16158. https://doi.org/10.1021/acs.jpcc.7b06199

K. Chen et al., Nano Energy 49 (2018), 411. https://doi.org/10.1016/j.nanoen.2018.05.006

E. Jokar et al., Energy Environ. Sci. 11 (2018), 2353. https://doi.org/10.1039/C8EE00956B

Y. Bai, X. Meng, S. Yang, Adv. Energy Mater. 8 (2018), 1701883. https://doi.org/10.1002/aenm.201701883

Z. Yang et al., Solar RRL n/a (2019). https://doi.org/10.1002/solr.201900257

N. L. Chang et al., Prog. Photovoltaics Res. Appl. 25 (2017), 390. https://doi.org/10.1002/pip.2871

Q. Xue, R. Xia, C. J. Brabec, H.-L. Yip, Energy Environ. Sci. 11 (2018), 1688. https://doi.org/10.1039/C8EE00154E

I. K. Popoola, M. A. Gondal, T. F. Qahtan, Renewable Sustainable Energy Rev. 82 (2017), 3127. https://doi.org/10.1016/j.rser.2017.10.028

T. Leijtens, K. A. Bush, R. Prasanna, M. D. McGehee, Nat. Energy 3 (2018), 828. https://doi.org/10.1038/s41560-018-0190-4

M. A. Green et al., Prog. Photovoltaics 28 (2020), 3. https://doi.org/10.1002/pip.3228

NREL's Best Research-Cell Efficiency Chart, 2020, https://www.nrel.gov/pv/cell-efficiency.html. Accessed 30.03.2020

T. Singh, T. Miyasaka, Adv. Energy Mater. 8 (2018), 1700677. https://doi.org/10.1002/aenm.201700677

M. Saliba et al., Chem. Mater. 30 (2018), 4193. https://doi.org/10.1021/acs.chemmater.8b00136

R. Fu et al., ChemNanoMat 5 (2019), 253. https://doi.org/10.1002/cnma.201800503

Y. Rong et al., Science 361 (2018), eaat8235. https://doi.org/10.1126/science.aat8235

W.-W. Liu et al., Adv. Mater. Interfaces 6 (2019), 1801758. https://doi.org/10.1002/admi.201801758

O. Almora, L. Vaillant-Roca, G. Garcia-Belmonte, Rev. Cubana Fis. 34 (2017), 58. http://www.revistacubanadefisica.org/index.php/rcf/article/view/RCF_34-1_58

J. E. Parrott, Sol. Energy Mater. Sol. Cells 30 (1993), 221. https://doi.org/10.1016/0927-0248(93)90142-P

L. M. Pazos-Outón et al., Science 351 (2016), 1430. https://doi.org/10.1126/science.aaf1168

W. Shockley, W. T. Read, Phys. Rev. 87 (1952), 835. https://doi.org/10.1103/PhysRev.87.835

R. N. Hall, Phys. Rev. 87 (1952), 387. https://doi.org/10.1103/PhysRev.87.387

S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, New Jersey, USA, 2007.

O. Almora et al., Nano Energy 48 (2018), 63. https://doi.org/10.1016/j.nanoen.2018.03.042

M. Bashahu, P. Nkundabakura, Solar Energy 81 (2007), 856. https://doi.org/10.1016/j.solener.2006.11.002

P. Calado et al., Phys. Rev. Appl. 11 (2019), 044005. https://doi.org/10.1103/PhysRevApplied.11.044005

W. Tress et al., Energy Environ. Sci. 11 (2017), 151. https://doi.org/10.1039/C7EE02415K

U. Rau, Phys. Rev. B 76 (2007), 085303. https:///doi.org/10.1103/PhysRevB.76.085303

K. Tvingstedt et al., Sci. Reports 4 (2014), 6071. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377528/

Z. Wei, J. Xing, J. Phys. Chem. Lett. 10 (2019), 3035. https://doi.org/10.1021/acs.jpclett.9b00277

S. Ravishankar et al., J. Phys. Chem. Lett. 9 (2018), 3099. https://doi.org/10.1021/acs.jpclett.8b01245

M. Stolterfoht et al., Energy Environ. Sci. 12 (2019), 2778. https://doi.org/10.1039/C9EE02020A

O. Almora et al., Nano Energy (2020), https://arxiv.org/abs/1911.05440.

J. W. Ryan, E. Palomares, Adv. Energy Mater. 7 (2017), 1601509. https://doi.org/10.1002/aenm.201601509

P. Lopez-Varo et al., Adv. Energy Mater. 8 (2018), 1702772. https://doi.org/10.1002/aenm.201702772

T. Unold, L. G. Gütay, in Advanced Characterization Techniques for Thin Film Solar Cells, (Eds: D. Abouâ€Ras, T. Kirchartz, U. Rau), Wiley, 2016, 275. https://doi.org/10.1002/9783527699025.ch11

J. Bisquert, F. Fabregat-Santiago, in Dye-sensitized solar cells, (Ed: K. Kalyanasundaram), CRC Press, Lausanne (Switzerland) 2010, 457.

T. W. Crothers et al., Nano Lett. 17 (2017), 5782. https://doi.org/10.1021/acs.nanolett.7b02834

J. M. Richter et al., Nat. Commun. 7 (2016), 13941. https://doi.org/10.1038/ncomms13941

T. Kirchartz, F. Staub, U. Rau, ACS Energy Lett. 1 (2016), 731. https://doi.org/10.1021/acsenergylett.6b00223

C. L. Davies et al., Nature Commun. 9 (2018), 293. https://doi.org/10.1038/s41467-017-02670-2

W. van Roosbroeck, W. Shockley, Phys. Rev. 94 (1954), 1558. https://doi.org/10.1103/PhysRev.94.1558

R. L. Milot et al., Adv. Funct. Mater. 25 (2015), 6218. https://doi.org/10.1002/adfm.201502340

E. M. Hutter et al., Nat. Mater. 16 (2017), 115. https://doi.org/10.1038/nmat4765

T. Kirchartz, U. Rau, J. Phys. Chem. Lett. 8 (2017), 1265. https://doi.org/10.1021/acs.jpclett.7b00236

J.-E. Moser, Nat. Mater. 16 (2017), 4. https://doi.org/10.1038/nmat4796

P. Azarhoosh et al., APL Mater. 4 (2016), 091501. https://doi.org/10.1063/1.4955028

X. Zhang, J.-X. Shen, W. Wang, C. G. Van de Walle, ACS Energy Lett. 3 (2018), 2329. https://doi.org/10.1021/acsenergylett.8b01297

F. Ambrosio, J. Wiktor, F. De Angelis, A. Pasquarello, Energy Environ. Sci. 11 (2018), 101. https://doi.org/10.1039/C7EE01981E

M. Stolterfoht et al., Nat. Energy 3 (2018), 847. https://doi.org/10.1038/s41560-018-0219-8

A. D. Wright et al., Adv. Funct. Mater. 27 (2017), 1700860. https://doi.org/10.1002/adfm.201700860

O. Almora et al., Sol. Energy Mater. Sol. Cells 195 (2019), 291. https://doi.org/10.1016/j.solmat.2019.03.003

F. Staub, U. Rau, T. Kirchartz, ACS Omega 3 (2018), 8009. https://doi.org/10.1021/acsomega.8b00962

O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, Appl. Phys. Lett. 109 (2016), 173903. https://doi.org/10.1063/1.4966127

O. Almora, M. García-Batlle, G. Garcia-Belmonte, J. Phys. Chem. Lett. 10 (2019), 3661. https://doi.org/10.1021/acs.jpclett.9b00601

L. M. Pazos-Outón, T. P. Xiao, E. Yablonovitch, J. Phys. Chem. Lett. 9 (2018), 1703. https://doi.org/10.1021/acs.jpclett.7b03054

W. E. I. Sha, X. Ren, L. Chen, W. C. H. Choy, Appl. Phys. Lett. 106 (2015), 221104. https://doi.org/10.1063/1.4922150

J.-X. Shen et al., Adv. Energy Mater. 8 (2018), 1801027. https://doi.org/10.1002/aenm.201801027

Y. Li et al., Nano Res. 12 (2019), 619. https://doi.org/10.1007/s12274-018-2266-7

J. Aneesh et al., J. Phys. Chem. C 121 (2017), 4734. https://doi.org/10.1021/acs.jpcc.7b00762

Y. Chen et al., Nat. Commun. 7 (2016), 12253. https://doi.org/10.1038/ncomms12253

Jarvist M. Frost et al., Nano Lett. 14 (2014), 2584. https://doi.org/10.1021/nl500390f

S. Dastidar et al., ACS Energy Lett. 2 (2017), 2239. https://doi.org/10.1021/acsenergylett.7b00606

N. F. Montcada et al., Nanoscale 10 (2018), 6155. https://doi.org/10.1039/C8NR00180D

N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, K. G. U. Wijayantha, Electrochem. Commun. 2 (2000), 658. https://doi.org/10.1016/S1388-2481(00)00097-7

O. Almora et al., Appl. Phys. Lett. 116 (2020), 013901. https://doi.org/10.1063/1.5139571

D. Prochowicz et al., J. Mater. Chem. C 7 (2019), 1273. https://doi.org/10.1039/C8TC05837G

W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 31 (2019), 1803230. https://doi.org/10.1002/adma.201803230

X. Jiang et al., Nat. Commun. 11 (2020), 1245. https://doi.org/10.1038/s41467-020-15078-2

W. Li et al., J. Am. Chem. Soc. 140 (2018), 15753. https://doi.org/10.1021/jacs.8b08448

T. S. Sherkar et al., ACS Energy Lett. 2 (2017), 1214. https://doi.org/10.1021/acsenergylett.7b00236

A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, Adv. Energy Mater. 9 (2019), 1901489. https://doi.org/10.1002/aenm.201901489

J.-P. Correa-Baena et al., Energy Environ. Sci. 10 (2017), 1207. https://doi.org/10.1039/C7EE00421D

A. Fakharuddin et al., ACS Appl. Mater. Interfaces 10 (2018), 42542. https://doi.org/10.1021/acsami.8b18200

W. Shockley, H. J. Queisser, J. Appl. Phys. 32 (1961), 510. https://doi.org/10.1063/1.1736034

S. Rühle, Solar Energy 130 (2016), 139. https://doi.org/10.1016/j.solener.2016.02.015

C. M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater. 31 (2019), 1902762. https://doi.org/10.1002/adma.201902762

L. Contreras-Bernal et al., J. Phys. Chem. C 121 (2017), 9705. https://doi.org/10.1021/acs.jpcc.7b01206

Y. Li et al., App. Phys. Lett. 112 (2018), 053904. https://doi.org/10.1063/1.5009040

J. Idígoras et al., Adv. Mater. Interfaces 5 (2018), 1801076. https://doi.org/10.1002/admi.201801076

M. T. Neukom et al., Sol. Energy Mater. Sol. Cells 169 (2017), 159. https://doi.org/10.1016/j.solmat.2017.05.021

O. Almora, A. Guerrero, G. Garcia-Belmonte, Appl. Phys. Lett. 108 (2016), 043903. https://doi.org/10.1063/1.4941033

O. Almora et al., J. Phys. Chem. Lett. 6 (2015), 1645. https://doi.org/10.1021/acs.jpclett.5b00480

O. Almora et al., ACS Energy Lett. 1 (2016), 209. https://doi.org/10.1021/acsenergylett.6b00116

O. Almora, C. Aranda, G. Garcia-Belmonte, J. Phys. Chem. C 122 (2018), 13450. https://doi.org/10.1021/acs.jpcc.7b11703

O. Almora, G. Garcia-Belmonte, Solar Energy 189 (2019), 103. https://doi.org/10.1016/j.solener.2019.07.048

J. Wang et al., ACS Energy Lett. 4 (2019), 222. https://doi.org/10.1021/acsenergylett.8b02058

I. Gelmetti et al., Energy Environ. Sci. 12 (2019), 1309. https://doi.org/10.1039/C9EE00528E

C. Ding et al., Nano Energy 53 (2018), 17. https://doi.org/10.1016/j.nanoen.2018.08.031

T. Kirchartz, Phil. Trans. R. Soc. A 377 (2019), 20180286. https://doi.org/10.1098/rsta.2018.0286

H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett. 5 (2014), 2927. https://doi.org/10.1021/jz501392m

E. L. Unger et al., Energy Environ. Sci. 7 (2014), 3690. https://doi.org/10.1039/C4EE02465F

H. J. Snaith et al., J. Phys. Chem. Lett. 5 (2014), 1511. https://doi.org/10.1021/jz500113x

J. A. Christians, J. S. Manser, P. V. Kamat, J. Phys. Chem. Lett. 6 (2015), 852. https://doi.org/10.1021/acs.jpclett.5b00289

E. Zimmermann et al., APL Mater. 4 (2016), 091901. https://doi.org/10.1063/1.4960759

N. Pellet et al., Prog. Photovoltaics 25 (2017), 942. https://doi.org/10.1002/pip.2894

L. Rakocevic et al., Sol. RRL 3 (2019), 1800287. https://doi.org/10.1002/solr.201800287

P. Calado et al., Nat. Commun. 7 (2016), 13831. https://doi.org/10.1038/ncomms13831

Y.-C. Zhao et al., Light: Sci. Appl. 6 (2017), e16243. https://doi.org/10.1038/lsa.2016.243

J. Xing et al., Phys. Chem. Chem. Phys. 18 (2016), 30484. https://doi.org/10.1039/C6CP06496E

C. Eames et al., Nat. Commun. 6 (2015), 7497. https://doi.org/10.1038/ncomms8497

Y. Shao et al., Energy Environ. Sci. 9 (2016), 1752. https://doi.org/10.1039/C6EE00413J

Y. Yuan, Q. Wang, J. Huang, in Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures, (Eds: N.-G. Park, M. Grätzel, T. Miyasaka), Springer International Publishing, Cham 2016, 137. https://doi.org/10.1007/978-3-319-35114-8_6

A. Senocrate et al., Angew. Chem., Int. Ed. 56 (2017), 7755. https://doi.org/10.1002/anie.201701724

C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 9 (2018), 5113. https://doi.org/10.1038/s41467-018-07571-6

H. Lee et al., ACS Energy Lett. 2 (2017), 943. https://doi.org/10.1021/acsenergylett.7b00150

Z. Li et al., Energy Environ. Sci. 10 (2017), 1234. https://doi.org/10.1039/C7EE00358G

J. Cao et al., Adv. Mater. 30 (2018), 1707350. https://doi.org/10.1002/adma.201707350

A. Pockett, M. J. Carnie, ACS Energy Lett. 2 (2017), 1683. https://doi.org/10.1021/acsenergylett.7b00490

J. Xiang, Y. Li, F. Huang, D. Zhong, Phys. Chem. Chem. Phys. 21 (2019), 17836. https://doi.org/10.1039/C9CP03548F

D. Walter et al., J. Phys. Chem. C 122 (2018), 11270. https://doi.org/10.1021/acs.jpcc.8b02529

P. Yadav et al., J. Phys. Chem. C 122 (2018), 15149. https://doi.org/10.1021/acs.jpcc.8b03948

Downloads

Published

2021-01-14

How to Cite

Almora, O. (2021). Chap. 24 - Hybrid perovskites: Charge carrier recombination effects in photovoltaic devices. OAJ Materials and Devices, 5(2). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/109