Chap. 13 - Influence of the PbO-excess on the structural, microstructural and ferroelectric properties of PLZT ceramics

Authors

  • Atair Carvalho da Silva Universidade Federal de Uberlandia (UFU), Brazil
  • Yanela Mendez González Universidad de La Habana, Cuba http://orcid.org/0000-0002-8031-8574
  • Elton Carvalho de Lima Universidade Federal do Tocantins, Porto Nacional, Brazil
  • José de los Santos Guerra Universidade Federal de Uberlandia (UFU), Brazil http://orcid.org/0000-0002-7906-4343

Keywords:

Ferroelectrics, PLZT ceramics, PbO excess, structural properties

Abstract

The physical properties of lead lanthanum zirconate titanate (PLZT) ceramics have been investigated as a function of a PbO excess from 0 to 20 mol% in samples of Pb0.94La0.06(Zr0.6895Ti0.2955)O3 (composition that reveals the best performance for piezoelectric applications for materials with rhombohedral symmetry). Results are presented in a compressive way in the frame of an overview on PLZT. Structural, microstructural and ferroelectric properties were investigated as a function of the PbO content. The X-ray diffraction results confirmed the formation of the perovskite structure for all the cases. However, the presence of the Pb2O3 secondary phase has been observed for the sample containing 15 mol% PbO excess. Raman spectroscopy studies revealed a strong influence of the PbO content on the active modes shifts. The ferroelectric properties have shown a decrease of both remnant (PR) and saturation (PS) polarizations for compositions up to 10 mol% PbO, whereas an increase of PR and PS was observed for the higher PbO content samples. Results reveal the effect of the PbO excess on the long-range order interactions for the studied system.

Author Biography

José de los Santos Guerra, Universidade Federal de Uberlandia (UFU), Brazil

Institute of Physics, Federal University of Uberlândia, Brazil

References

K.Uchino, Ferroelectric Devices, Marcell Dekker Inc., New York (2000)

B.Jaffe, W.R.Cook, H.Jaffe, Piezoelectric Ceramics, Academic Press, London-New York (1971)

B.Jaffe, R.S.Roth, S.Marzullo, J. Appl. Phys., vol.25, p 809 (1954)

K.Kakewaga, O.Matsunaga, T.Kat, Y. Sasaki, J. Am. Ceram. Soc., vol.78, p 1071 (1995)

J.C.Fernandes, D.A.Hall, M.R.Cockburn, G.N.Greaves, Nucl. Instrum. Methods Phys. Res. B, vol.97, p 137 (1995)

M.Hammer, C.Montry, A.Endriss, M.J.Hoffmann, J. Am. Ceram. Soc., vol.81, p 721 (1998)

A.P.Wilkinson, J.Xu, S.Pattanaik, J.L.Billinge, Chem. Mater., vol.10, p 3611 (1998)

Y.Xu, Ferroelectric materials and their applications, Elsevier Science Publishers BV, Amsterdam (1991)

A. M.Glazer, Acta Crystallogr. A, vol.31, p. 756 (1975)

W.Heywang, K.Lubitz, W.Wersing, Piezoelectricity, Evolution and Future of a Technology, Springer Series in Material Science, Berlin (2008)

G.H.Haertling, J. Am. Ceram. Soc., vol.82, p 797 (1999)

L. Egerton, D.M.Dillon, J. Am. Ceram. Soc., vol.42, p 438 (1959)

C.Xu, D.Lin, K.W.Kwok, Solid State Sci., vol.10, p 934 (2008)

Y. Guo, Y. Liu, R.L. Withers, F. Brink, H. Chen, Chem. Mater., vol.23, p 219 (2011)

P.K.Panda, B.Sahoo, Ferroelectrics, vol.474, p 128 (2015)

R.R.McQuade, M.R.Dolgos, J. Solid State Chem., vol.242, p 140 (2016)

R.G.Sabat, Characterization of PLZT Ceramics for Optical Sensor and Actuator Devices, Ceramic Materials - Progress in Modern Ceramics, Prof. Feng Shi (Ed.), London (2012)

P.Goel, S.Sharma, K.L.Yadav, A.R.James, Pramana – J. Phys., vol.65, p 1127 (2005)

Inorganic Crystal Structure Database - ICSD, FIZ Karlsruhe, Germany (2014)

A.C.Larson, R.B.Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2000)

C.B.Sawyer, C.H.Tower, Phys. Rev., vol.35, p 269 (1930)

P.Zavalij, V.K.Pecharsky. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Srpinger, New York (2005)

V.V.Efimov, S.S.Khasanov, B.N.Mavrin, N.N.Novikova, A.V.Shilnikov, A.I.Burkhanov, V.V.Sikolenko, A. Sternberg, S.I.Tiutiunnikov, D.M.Többens, V.A.Yakovlev, Ferroelectrics, vol.302, p 327 (2004)

A. Bystroem, Mineralogi och Geologi, vol.24, p 1 (1947)

R.A.Young, The Rietveld Method (IUCr Oxford University Press, New York, 1993)

B.H.Toby, Powder Diffract., vol.21, p 67 (2006)

E.Buixaderas, M.Berta, L.Kozielski, I.Gregora, Phase Transit., vol.84, p 528 (2011)

K.Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New Jersey (2009)

M.Deluca, H.Fukuruma, N.Tonari, C.Capiani, N.Hasuike, K.Kisoda, C.Galassi, H.Harima, J.

Raman Spectrosc., vol.42, p 488 (2011)

E.Buixaderas, I.Gregora, M.Savinov, J.Hlinka, L.Jin, D.Damjanovic, B.Malic, Phys. Rev. B, vol.91, 014104 (2015)

M.-K.Zhu, P.â€X.Lu, Y.â€D.Hou, X.-M.Song, H.Wang, H.Yan, J. Am. Ceram. Soc., vol.89, p 3739 (2006)

E.B. ArauÌjo, Recent Advances in Processing, Structural and Dielectric Properties of PMN-PT Ferroelectric Ceramics at Compositions Around the MPB, Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, Costas Sikalidis, IntechOpen (2011) DOI: 10.5772/18083

R.Ashiri, Vib. Spectrosc., vol.66, p 24 (2013)

Y.Zhang, X.Cheng, S.Zhang, Appl. Phys. A, vol.89, p 685 (2007)

C.Sangsubun, A.Watcharapasorn, S.Jiansirisomboon, Integr. Ferroelectr., vol.149, p 61 (2013)

L.Hai, Z.Bo-Ping, P.Yu, Z.Lei, W.Kai-sheng, L.Yan-tao, J. Mat. Res., vol.30, p 782 (2015)

L.Zhou, A.Zimmermann, Y.P.Zeng, F.Aldinger, J. Mat. Sci., vol.15, p 145 (2004)

Downloads

Published

2021-01-14

How to Cite

Carvalho da Silva, A., Mendez González, Y., Carvalho de Lima, E., & de los Santos Guerra, J. (2021). Chap. 13 - Influence of the PbO-excess on the structural, microstructural and ferroelectric properties of PLZT ceramics. OAJ Materials and Devices, 5(2). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/110