OAJ Materials and Devices, vol 5(1), Chap No 2 in “Perovskites and other framework crystals: new trends and perspectives” (Coll. Acad. 2020) DOI:10.23647/ca.md20202105
Functional Perovskites: Structure-Properties Correlations
Keywords:
FUNCTIONAL PEROVSKITES, CRYSTAL STRUCTURE, MAGNETIC STRUCTURE, NEUTRON DIFFRACTIONAbstract
The perovskite structure with general formula ABX3 shows its multidimensional nature in regards to correlations of crystal structures with electronic, magnetic, optical, and catalytic properties. Perovskites are utilized in a large range of applications due to their tremendous versatility. In this chapter, structure-properties correlations in oxide perovskite compounds ABO3 having several functional properties are presented. In particular, neutron and x-ray diffraction results are described to reveal a direct correlation of several important physical properties, such as magnetic, multiferroic, electronic (CMR), and SOFC electrodes with the crystal structures.
References
Goldshmidt VM. Geochemische verteilungsgesetze der elememte VII. die
gesetze der krystallochemie. Norske Videnskaps - Akademi, Matemtsik -
Naturvidenskapelig Klasse I, Skifter, Oslo,. 1926: 2.
Yusuf SM, Kumar A. Neutron scattering of advanced magnetic materials.
Applied Physics Reviews. 2017;4(3):031303.
Howard CJ, Stokes HT. Group-Theoretical Analysis of Octahedral Tilting in
Perovskites. Acta Crystallographica Section B. 1998;54(6):782-9.
Mitchell RH, Welch MD, Chakhmouradian AR. Nomenclature of the perovskite
supergroup: A hierarchical system of classification based on crystal structure and
composition. Mineralogical Magazine. 2018;81(3):411-61.
Nasir M, Khan M, Bhatt S, Bera AK, Furquan M, Kumar S, et al. Influence of
Cation Order and Valence States on Magnetic Ordering in La2Ni1?xMn1+xO6. Physica
Status Solidi (b). 2019;0(0):1900019.
Manna K, Bera AK, Jain M, Elizabeth S, Yusuf SM, Anil Kumar PS. Structural-
modulation-driven spin canting and reentrant glassy magnetic phase in ferromagnetic
Lu 2MnNiO6. Physical Review B. 2015;91(22):224420.
Manna K, Sarkar R, Fuchs S, Onykiienko YA, Bera AK, Cansever GA, et al.
Noncollinear antiferromagnetism of coupled spins and pseudospins in the double
perovskite La2CuIrO6. Physical Review B. 2016;94(14):144437.
Rao CNR. Transition Metal Oxides. Annual Review of Physical Chemistry.
;40(1):291-326.
Rao CNR, Seikh MM, Narayana C. Spin-State Transition in LaCoO3 and
Related Materials. In: Gütlich P, Goodwin HA, editors. Spin Crossover in Transition
Metal Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 1-21.
Tokura Y, Nagaosa N. Orbital Physics in Transition-Metal Oxides. Science.
;288(5465):462.
Anderson PW. Exchange in Insulators: Superexchange, Direct Exchange, and
Double Exchange. In: Rado GT, Suhl H, editors. Magnetism: Academic Press; 1963. p.
-83.
Zener C. Interaction Between the $d$ Shells in the Transition Metals. Physical
Review. 1951;81(3):440-4.
Zener C. Interaction between the d-Shells in the Transition Metals. II.
Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review.
;82(3):403-5.
Dzyaloshinskii I. Theory of helical structures in antiferromagnets I: Nonmetals.
Sov Phys JETP. 1964;19:960-71.
Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism.
Physical Review. 1960;120(1):91-8.
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control
of ferroelectric polarization. Nature. 2003;426(6962):55-8.
Sarkar P, Mandal P, Bera AK, Yusuf SM, Sharath Chandra LS, Ganesan V.
Field-induced first-order to second-order magnetic phase transition in Sm 0.52Sr0.48MnO3.
Physical Review B. 2008;78(1):012415.
Sarkar P, Mandal P, Mydeen K, Bera AK, Yusuf SM, Arumugam S, et al. Role
of external and internal perturbations on the ferromagnetic phase transition in
Sm0.52Sr 0.48MnO3. Physical Review B. 2009;79(14):144431.
De Teresa JM, Ritter C, Algarabel PA, Yusuf SM, Blasco J, Kumar A, et al.
Detailed neutron study of the crossover from long-range to short-range magnetic
ordering in (Nd1-xTbx)0.55Sr0.45MnO3 manganites. Physical Review B.
;74(22):224442.
Yusuf SM, De Teresa JM, Ritter C, Serrate D, Ibarra MR, Yakhmi JV, et al.
Possible quantum critical point in (La 1-xDyx)0.7Ca 0.3MnO3. Physical Review B.
;74(14):144427.
Manna PK, Yusuf SM. Two interface effects: Exchange bias and magnetic
proximity. Physics Reports. 2014;535(2):61-99.
Manna PK, Yusuf SM, Mukadam MD, Kohlbrecher J. Evidence of a core–shell
structure in the antiferromagnetic La0.2Ce0.8CrO 3 nanoparticles by neutron scattering.
Applied Physics A. 2012;109(2):385-90.
Manna PK, Yusuf SM, Shukla R, Tyagi AK. Coexistence of sign reversal of
both magnetization and exchange bias field in the core-shell type La 0.2Ce0.8CrO 3
nanoparticles. Applied Physics Letters. 2010;96(24):242508.
Liu H, Yang X. A brief review on perovskite multiferroics. Ferroelectrics.
;507(1):69-85.
Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial
BiFeO3; Multiferroic Thin Film Heterostructures. Science. 2003;299(5613):1719.
Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics
Reports. 2009;2 20.
Wang KF, Liu JM, Ren ZF. Multiferroicity: the coupling between magnetic and
polarization orders. Advances in Physics. 2009;58(4):321-448.
Ramirez AP. Colossal magnetoresistance. Journal of Physics: Condensed
Matter. 1997;9(39):8171-99.
Rao CNR, Cheetham AK, Mahesh R. Giant Magnetoresistance and Related
Properties of Rare-Earth Manganates and Other Oxide Systems. Chemistry of
Materials. 1996;8(10):2421-32.
Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role
of phase separation. Physics Reports. 2001;344(1):1-153.
Rao CNR, Raychaudhuri AK. Colossal magnetoresistance, charge ordering
and other novel properties of manganates and related materials. Colossal
Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides:
World Scientific; 1998. p. 1-42.
Millis AJ, Shraiman BI, Mueller R. Dynamic Jahn-Teller Effect and Colossal
Magnetoresistance in La1-xSr xMnO3. Physical Review Letters. 1996;77(1):175-8.
Razavi FS, Gross G, Habermeier HU, Lebedev O, Amelinckx S, Van Tendeloo
G, et al. Epitaxial strain induced metal insulator transition in La0.9Sr0.1MnO3 and
La0.88Sr0.1MnO3 thin films. Applied Physics Letters. 2000;76(2):155-7.
Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, et al.
Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films. Science.
;306(5698):1005.
Ohtomo A, Muller DA, Grazul JL, Hwang HY. Artificial charge-modulationin
atomic-scale perovskite titanate superlattices. Nature. 2002;419(6905):378-80.
Fan M, Zhang W, Jian J, Huang J, Wang H. Strong perpendicular exchange
bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films. APL Materials.
;4(7):076105.
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ,
Kovalenko MV. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium
Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters. 2015;15(8):5635-40.
Skinner SJ. Recent advances in Perovskite-type materials for solid oxide fuel
cell cathodes. International Journal of Inorganic Materials. 2001;3(2):113-21.
Larramendi IRd, Ortiz-VitorianoIsaen N, Dzul-Bautista B, Rojo T. Designing
Perovskite Oxides for Solid Oxide Fuel Cells. In: Pan L, Zhu G, editors. Perovskite
Materials - Synthesis, Characterisation, Properties, and Applications: IntechOpen
February 3rd 2016.
Service RF. Perovskite LEDs begin to shine. Science. 2019;364(6444):918.
Yang Y, Dai H, Yang F, Zhang Y, Luo D, Zhang X, et al. All-Perovskite
Photodetector with Fast Response. Nanoscale Research Letters. 2019;14(1):291.
Yu W, Li F, Yu L, Niazi MR, Zou Y, Corzo D, et al. Single crystal hybrid
perovskite field-effect transistors. Nature Communications. 2018;9(1):5354.
Atta NF, Galal A, El-Ads EH. Perovskite Nanomaterials - Synthesis,
Characterization, and Applications. In: Zhu LPaG, editor. Perovskite Materials -
Synthesis, Characterisation, Properties, and Applications: IntechOpen; February 3rd
Kanamori J. Superexchange interaction and symmetry properties of electron
orbitals. Journal of Physics and Chemistry of Solids. 1959;10(2):87-98.
Kanamori J. Crystal Distortion in Magnetic Compounds. Journal of Applied
Physics. 1960;31(5):S14-S23.
Kugel KI, Khomski? DI. The Jahn-Teller effect and magnetism: transition metal
compounds. Soviet Physics Uspekhi. 1982;25(4):231-56.
Viswanathan M, Anil Kumar PS, Bhadram VS, Narayana C, Bera AK, Yusuf
SM. Influence of lattice distortion on the Curie temperature and spin–phonon coupling
in LaMn0.5Co0.5 O3. Journal of Physics: Condensed Matter. 2010;22(34):346006.
Joy PA, Khollam YB, Date SK. Spin states of Mn and Co in LaMn0.5Co0.5O3.
Physical Review B. 2000;62(13):8608-10.
Chen L, Yuan C, Xue J, Wang J. B-site ordering and magnetic behaviours in
Ni-doped double perovskite Sr2FeMoO6. Journal of Physics D: Applied Physics.
;38(22):4003-8.
Woodward P, Hoffmann RD, Sleight AW. Order-disorder in A2M3+M5+O6
perovskites. Journal of Materials Research. 2011;9(8):2118-27.
Balcells L, Navarro J, Bibes M, Roig A, Mart??nez B, Fontcuberta J. Cationic
ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics
Letters. 2001;78(6):781-3.
Chakraborty KR, Das A, Yusuf SM, Krishna PSR, Tyagi AK. Low-temperature
neutron diffraction study of La1?xNdxCrO 3 (x=0.05, 0.1, 0.2 and 0.25). Journal of
Magnetism and Magnetic Materials. 2006;301(1):74-8.
Chakraborty KR, Yusuf SM, Tyagi AK. Magnetic ordering in La0.75Sr0.25CrO3: A
neutron diffraction study. Journal of Magnetism and Magnetic Materials.
;320(6):1163-6.
Chakraborty KR, Mukherjee S, Kaushik SD, Rayaprol S, Prajapat CL, Singh
MR, et al. Low temperature neutron diffraction study of Nd1?xSrxCrO3 (0.05?x?0.15).
Journal of Magnetism and Magnetic Materials. 2014;361:81-7.
Shukla R, Manjanna J, Bera AK, Yusuf SM, Tyagi AK. La 1?xCexCrO3 (0.0 ? x ?
0): A New Series of Solid Solutions with Tunable Magnetic and Optical Properties.
Inorganic Chemistry. 2009;48(24):11691-6.
Shukla R, Bera AK, Yusuf SM, Deshpande SK, Tyagi AK, Hermes W, et al.
Multifunctional Nanocrystalline CeCrO3: Antiferromagnetic, Relaxor, and Optical
Properties. The Journal of Physical Chemistry C. 2009;113(29):12663-8.
Yoshii K, Nakamura A, Ishii Y, Morii Y. Magnetic Properties of La1?xPrxCrO3.
Journal of Solid State Chemistry. 2001;162(1):84-9.
Hemberger J, Lobina S, Krug von Nidda HA, Tristan N, Ivanov VY, Mukhin AA,
et al. Complex interplay of 3d and 4f magnetism in La1-xGdxMnO3. Physical Review B.
;70(2):024414.
Kumar A, Yusuf SM, Ritter C. Nd-ordering-driven Mn spin reorientation and
magnetization reversal in the magnetostructurally coupled compound NdMnO3 .
Physical Review B. 2017;96(1):014427.
Kumar A, Yusuf SM. The phenomenon of negative magnetization and its
implications. Physics Reports. 2015:1-34.
Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric Oxides. Chemistry
of Materials. 1998;10(10):2753-69.
von Hippel A. Ferroelectricity, Domain Structure, and Phase Transitions of
Barium Titanate. Reviews of Modern Physics. 1950;22(3):221-37.
Anderson PW. Antiferromagnetism. Theory of Superexchange Interaction.
Physical Review. 1950;79(2):350-6.
Goodenough JB. Theory of the Role of Covalence in the Perovskite-Type
Manganites [La,MII]MnO3. Physical Review. 1955;100(2):564-73.
Tachibana M, Shimoyama T, Kawaji H, Atake T, Takayama-Muromachi E.
Jahn-Teller distortion and magnetic transitions in perovskite RMnO3 (R=Ho, Er, Tm,
Yb, and Lu). Physical Review B. 2007;75(14):144425.
Lorenz B. Hexagonal Manganites RMnO3: Class (I) Multiferroics with Strong
Coupling of Magnetism and Ferroelectricity. ISRN Condensed Matter Physics.
;2013:43.
Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of
ferroelectricity in magnetoelectric YMnO3. Nature Materials. 2004;3(3):164-70.
Fiebig M, Lottermoser T, Pisarev RV. Spin-rotation phenomena and magnetic
phase diagrams of hexagonal RMnO 3. Journal of Applied Physics. 2003;93(10):8194-
Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity.
Nature Materials. 2007;6(1):13-20.
Chakraborty KR, Paul B, Shukla R, Krishna PSR, Kumar A, Mukadam MD, et
al. Revealing magnetic ordering and spin-phonon coupling in Y 1?xTbxMnO 3 (0.1 ? x ?
3) compounds. Journal of Physics: Condensed Matter. 2017;29(15):155804.
Chakraborty KR, Shukla R, Kaushik SD, Mukadam MD, Siruguri V, Tyagi AK,
et al. Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline
TbMnO 3. Journal of Applied Physics. 2015;118(16):164307.
Bossak AA, Graboy IE, Gorbenko OY, Kaul AR, Kartavtseva MS, Svetchnikov
VL, et al. XRD and HREM Studies of Epitaxially Stabilized Hexagonal Orthoferrites
RFeO3 (R = Eu?Lu). Chemistry of Materials. 2004;16(9):1751-5.
Shang M, Zhang C, Zhang T, Yuan L, Ge L, Yuan H, et al. The multiferroic
perovskite YFeO3. Applied Physics Letters. 2013;102(6):062903.
Akbashev AR, Semisalova AS, Perov NS, Kaul AR. Weak ferromagnetism in
hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters.
;99(12):122502.
Das H, Wysocki AL, Geng Y, Wu W, Fennie CJ. Bulk magnetoelectricity in the
hexagonal manganites and ferrites. Nature Communications. 2014;5:2998.
Suresh P, Vijaya Laxmi K, Bera AK, Yusuf SM, Chittari BL, Jung J, et al.
Magnetic ground state of the multiferroic hexagonal LuFeO3. Physical Review B.
;97(18):184419.
Wang W, Zhao J, Wang W, Gai Z, Balke N, Chi M, et al. Room-Temperature
Multiferroic Hexagonal LuFeO3 Films. Physical Review Letters. 2013;110(23):237601.
Disseler SM, Borchers JA, Brooks CM, Mundy JA, Moyer JA, Hillsberry DA, et
al. Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3. Physical
Review Letters. 2015;114(21):217602.
Jeong YK, Lee J-H, Ahn S-J, Jang HM. Epitaxially Constrained Hexagonal
Ferroelectricity and Canted Triangular Spin Order in LuFeO3 Thin Films. Chemistry of
Materials. 2012;24(13):2426-8.
Dutta DP, Mandal BP, Mukadam MD, Yusuf SM, Tyagi AK. Improved magnetic
and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared
via sonochemical synthesis. Dalton Transactions. 2014;43(21):7838-46.
Mukherjee A, Basu S, Manna PK, Yusuf SM, Pal M. Enhancement of
multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. Journal of
Alloys and Compounds. 2014;598:142-50.
Saha R, Shireen A, Bera AK, Shirodkar SN, Sundarayya Y, Kalarikkal N, et al.
Structure and magnetic properties of the Al1?xGaxFeO3 family of oxides: A combined
experimental and theoretical study. Journal of Solid State Chemistry. 2011;184(3):494-
Saha R, Shireen A, Shirodkar SN, Waghmare UV, Sundaresan A, Rao CNR.
Multiferroic and magnetoelectric nature of GaFeO 3, AlFeO3 and related oxides. Solid
State Communications. 2012;152(21):1964-8.
Schiffer P, Ramirez AP, Bao W, Cheong SW. Low Temperature
Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3. Physical
Review Letters. 1995;75(18):3336-9.
Mahesh R, Mahendiran R, Raychaudhuri AK, Rao CNR. Giant
Magnetoresistance in Bulk Samples of La1-xAxMnO3 (A = Sr or Ca). Journal of Solid
State Chemistry. 1995;114(1):297-9.
Ramirez AP, Schiffer P, Cheong SW, Chen CH, Bao W, Palstra TTM, et al.
Thermodynamic and Electron Diffraction Signatures of Charge and Spin Ordering in
La1-x CaxMnO3. Physical Review Letters. 1996;76(17):3188-91.
von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative
magnetoresistance in perovskitelike La2/3 Ba1/3MnOx ferromagnetic films. Physical
Review Letters. 1993;71(14):2331-3.
Yusuf SM, Sahana M, Hegde MS, Dörr K, Müller KH. Evidence of
ferromagnetic domains in the La0.67Ca0.33Mn0.9Fe0.1O3 perovskite. Physical Review B.
;62(2):1118-23.
Yusuf SM, Ganguly R, Chakraborty KR, Mishra PK, Paranjpe SK, Yakhmi JV,
et al. Effect of Dy substitution for La in La 0.7Ca0.3MnO3 perovskite. Journal of Alloys and
Compounds. 2001;326(1):89-93.
Yusuf SM, Sahana M, Dörr K, Rößler UK, Müller KH. Effect of Ga doping for
Mn on the magnetic properties of La 0.67Ca0.33MnO3. Physical Review B.
;66(6):064414.
Yusuf SM, Chakraborty KR, Ganguly R, Mishra PK, Paranjpe SK, Yakhmi JV,
et al. Evidence of ferromagnetic domains in the (La 0.757Dy0.243)0.7 Ca0.3MnO3 perovskite.
Journal of Magnetism and Magnetic Materials. 2004;272-276:1288-9.
Rößler S, Rößler UK, Nenkov K, Eckert D, Yusuf SM, Dörr K, et al. Rounding
of a first-order magnetic phase transition in Ga-doped La0.67Ca0.33MnO3. Physical
Review B. 2004;70(10):104417.
Yusuf SM, De Teresa JM, Algarabel PA, Blasco J, Ibarra MR, Kumar A, et al.
Nature of the magnetic ordering for small mean-size and large-size mismatch of A-site
cations in CMR manganites. Physica B: Condensed Matter. 2006;385-386:401-4.
Yusuf SM, Chakraborty KR, Paranjpe SK, Ganguly R, Mishra PK, Yakhmi JV,
et al. Magnetic and electrical properties of (La 1-xDyx)0.7Ca0.3MnO3 perovskites. Physical
Review B. 2003;68(10):104421.
Mahesh R, Mahendiran R, Raychaudhuri AK, Rao CNR. Effect of particle size
on the giant magnetoresistance of La0.7Ca0.3MnO3. Applied Physics Letters.
;68(16):2291-3.
Gayathri N, Raychaudhuri AK, Tiwary SK, Gundakaram R, Arulraj A, Rao
CNR. Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides
with mixed exchange interactions: A study of the La0.7Ca0.3Mn 1-xCoxO3 system. Physical
Review B. 1997;56(3):1345-53.
Sarkar T, Raychaudhuri AK, Bera AK, Yusuf SM. Effect of size reduction on the
ferromagnetism of the manganite La 1?xCaxMnO3 (x=0.33). New Journal of Physics.
;12(12):123026.
Hueso LE, Sande P, Miguéns DR, Rivas J, Rivadulla F, López-Quintela MA.
Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3?? nanoparticles synthesized by
sol–gel techniques. Journal of Applied Physics. 2002;91(12):9943-7.
Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material
selection for solid oxide fuel cell technology: A review. Progress in Materials Science.
;72:141-337.
Sunarso J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high
temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review.
Progress in Energy and Combustion Science. 2017;61:57-77.
Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting
electrolyte materials for clean energy applications: structural and mechanistic features.
Chemical Society Reviews. 2010;39(11):4370-87.
Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature.
;414(6861):345-52.
Chakraborty KR, Yusuf SM, Krishna PSR, Ramanadham M, Tyagi AK,
Pomjakushin V. Structural study of La 0.75Sr0.25CrO3 at high temperatures. Journal of
Physics: Condensed Matter. 2006;18(37):8661-72.
Chakraborty KR, Yusuf SM, Krishna PSR, Ramanadham M, Pomjakushin V,
Tyagi AK. Structural stability of orthorhombic and rhombohedral La 0.75Nd0.25CrO3: a
high-temperature neutron diffraction study. Journal of Physics: Condensed Matter.
;19(21):216207.
Jacobson AJ. Materials for Solid Oxide Fuel Cells. Chemistry of Materials.
;22(3):660-74.
Hammouche A, Siebert E, Hammou A. Crystallographic, thermal and
electrochemical properties of the system La1?xSrxMnO3 for high temperature solid
electrolyte fuel cells. Materials Research Bulletin. 1989;24(3):367-80.
Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, et al.
Ln1?xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel
cells. Solid State Ionics. 1999;118(3):187-94.
Rim H-R, Jeung S-K, Jung E, Lee J-S. Characteristics of Pr 1?xMxMnO3 (M =
Ca, Sr) as cathode material in solid oxide fuel cells. Materials Chemistry and Physics.
;52(1):54-9.
Mastin J, Einarsrud M-A, Grande T. Structural and Thermal Properties of La 1-
xSrxCoO3-?. Chemistry of Materials. 2006;18(25):6047-53.
Verbraeken MC, Ramos T, Agersted K, Ma Q, Savaniu CD, Sudireddy BR, et
al. Modified strontium titanates: from defect chemistry to SOFC anodes. RSC
Advances. 2015;5(2):1168-80.
Yurkiv V, Constantin G, Hornes A, Gondolini A, Mercadelli E, Sanson A, et al.
Towards understanding surface chemistry and electrochemistry of La0.1Sr0.9TiO3-?
based solid oxide fuel cell anodes. Journal of Power Sources. 2015;287:58-67.
Hui S, Petric A. Electrical Properties of Yttrium-Doped Strontium Titanate
under Reducing Conditions. Journal of The Electrochemical Society. 2002;149(1):J1-
J10.
Tao S, Irvine JTS. A redox-stable efficient anode for solid-oxide fuel cells.
Nature Materials. 2003;2(5):320-3.
Chamberland BL, Danielson PS. Alkaline-earth vanadium (IV) oxides having
the AVO3 composition. Journal of Solid State Chemistry. 1971;3(2):243-7.
Martínez-Coronado R, Alonso JA, Aguadero A, Fernández-Díaz MT. Optimized
energy conversion efficiency in solid-oxide fuel cells implementing SrMo1?xFexO3??
perovskites as anodes. Journal of Power Sources. 2012;208:153-8.
Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK, Tsiakaras P. Advanced
materials for SOFC application: Strategies for the development of highly conductive
and stable solid oxide proton electrolytes. Progress in Materials Science. 2016;75:38-
Ishihara T, Matsuda H, Takita Y. Doped LaGaO 3 Perovskite Type Oxide as a
New Oxide Ionic Conductor. Journal of the American Chemical Society.
;116(9):3801-3.
Ishihara T, Shibayama T, Nishiguchi H, Takita Y. Oxide ion conductivity in
La 0.8Sr0.2Ga0.8Mg0.2?XNi XO3 perovskite oxide and application for the electrolyte of solid
oxide fuel cells. Journal of Materials Science. 2001;36(5):1125-31.
Zhu Z, Sun W, Shi Z, Liu W. Proton-conducting solid oxide fuel cells with
yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures.
Journal of Alloys and Compounds. 2016;658:716-20.
Iwahara H, Uchida H, Ono K, Ogaki K. Proton Conduction in Sintered Oxides
Based on BaCeO3. Journal of The Electrochemical Society. 1988;135(2):529-33.
Zuo C, Zha S, Liu M, Hatano M, Uchiyama M. Ba(Zr 0.1Ce0.7Y0.2)O3–? as an
Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Advanced Materials.
;18(24):3318-20.
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, et al. Electron-hole
diffusion lengths >175 ?m in solution-grown CH 3NH3PbI3 single crystals. Science.
;347(6225):967.
Li X, Bi D, Yi C, Décoppet J-D, Luo J, Zakeeruddin SM, et al. A vacuum flash–
assisted solution process for high-efficiency large-area perovskite solar cells. Science.
;353(6294):58.
Hu K-L, Kurmoo M, Wang Z, Gao S. Metal–Organic Perovskites: Synthesis,
Structures, and Magnetic Properties of [C(NH 2)3][MII(HCOO)3] (M=Mn, Fe, Co, Ni, Cu,
and Zn; C(NH2)3= Guanidinium). Chemistry – A European Journal. 2009;15(44):12050-
Viswanathan M, Bhat SG, Bera AK, Rodríguez-Carvajal J. Neutron Diffraction
Study on the Magnetic Structure of the Promised Multiferroic Hybrid Perovskite
[C(ND2 )3]Cu(DCOO)3 and Its Centrosymmetric Analogues. The Journal of Physical
Chemistry C. 2019;123(30):18551-9.
Lawler JMM, Manuel P, Thompson AL, Saines PJ. Probing ferroic transitions in
a multiferroic framework family: a neutron diffraction study of the ammonium transition
metal formates. Dalton Transactions. 2015;44(25):11613-20.
Gómez-Aguirre LC, Pato-Doldán B, Mira J, Castro-García S, Señarís-
Rodríguez MA, Sánchez-Andújar M, et al. Magnetic Ordering-Induced Multiferroic
Behavior in [CH3NH3][Co(HCOO)3] Metal–Organic Framework. Journal of the American
Chemical Society. 2016;138(4):1122-5.
Zhao J-P, Xu J, Han S-D, Wang Q-L, Bu X-H. A Niccolite Structural Multiferroic
Metal–Organic Framework Possessing Four Different Types of Bistability in Response
to Dielectric and Magnetic Modulation. Advanced Materials. 2017;29(23):1606966.
Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, et
al. Infinite-layer iron oxide with a square-planar coordination. Nature. 2007;450:1062.
Kageyama H, Hayashi K, Maeda K, Attfield JP, Hiroi Z, Rondinelli JM, et al.
Expanding frontiers in materials chemistry and physics with multiple anions. Nature
Communications. 2018;9(1):772.
Clark L, Oró-Solé J, Knight KS, Fuertes A, Attfield JP. Thermally Robust Anion-
Chain Order in Oxynitride Perovskites. Chemistry of Materials. 2013;25(24):5004-11.
Oró-Solé J, Clark L, Bonin W, Attfield JP, Fuertes A. Anion-ordered chains in a
d1 perovskite oxynitride: NdVO2 N. Chemical Communications. 2013;49(24):2430-2.
Yajima T, Takeiri F, Aidzu K, Akamatsu H, Fujita K, Yoshimune W, et al. A labile
hydride strategy for the synthesis of heavily nitridized BaTiO3. Nature Chemistry.
;7:1017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dr. A. K. BERA, Prof. S. M. YUSUF

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License ( Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- To the extent transferable, copyright in and to the undersigned article is hereby assigned to Collaborating Academics and Open Access Journal Materials and Devices (ISSN: 2495-3911) for publication in the website of the journal and as part of a book (eventually a special volume) that could be produced in a printed and/or an electronic form.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Figures, tables, and other information present in articles published in the OAJ Materials and Devices may be reused without permission, provided the citation of original article is made in figure's or table's caption.