Hybrid organic-inorganic perovskites: a spin-off of oxidic perovskites


  • Alberto Garcia cica udc
  • Emilio José Juarez-Pérez ARAID Foundation, INA, University of Zaragoza, 50018 Zaragoza, Spain
  • Socorro Castro-Garcia QuiMolMat group, Faculty of Science and Centro de Investigaciones Cientificas avanzadas, 15071 A Coruna, Spain
  • Manuel Sanchez-Andujar QuiMolMat group, Faculty of Science and Centro de Investigaciones Cientificas avanzadas, 15071 A Coruna, Spain
  • Maria Antonia Senaris-Rodriguez QuiMolMat group, Faculty of Science and Centro de Investigaciones Cientificas avanzadas, 15071 A Coruna, Spain


perovskite, structure, hybrid organic-inorganic perovskite, perovskite related structures, distortion mechanisms, structure-properties relationships


ABX3 compounds with perovskite structure have been intensively and extensively studied in the last decades in view of their structural richness and amazing variety of interesting properties, such as piezoelectricity, ferroelectricity, ferromagnetism, superconductivity, magnetoresistance, multiferroicity, etc. In this chapter, we recompile well-established chemical and structural concepts in pure inorganic perovskites (mainly oxidic perovskites), and extend them to the young family of hybrid organic-inorganic perovskites. Our final goal is to help understanding the relationships among composition, crystal structure and properties in this new family of compounds, for inspiring further the design of novel materials.


Galasso FS. Structure, properties, and preparation of perovskite-type

compounds. Oxford: Pergamon Press; 1969.

Lines ME, Glass AM. Principles and Applications of Ferroelectrics and

Related Materials. Oxford University Press; 2001.

Goodenough JB. Magnetism and the Chemical Bond. John Wiley &

Sons, Ltd; 1963.

Rao CNR. Chemistry of High Temperature Superconductors. WORLD


Liu H, Yang X. A brief review on perovskite multiferroics.

Ferroelectrics. 2017, 507, 69–85.

Rao CNR, Raveau B. Colossal Magnetoresistance, Charge Ordering and

Related Properties of Manganese Oxides. WORLD SCIENTIFIC; 1998.

Tejuca LG, Fierro JLG. Properties and applications of perovskite-type

oxides. M. Dekker; 1993. 382 p.

Tilley RJD. Perovskites: structure-property relationships. Chichester,

UK: John Wiley & Sons, Ltd; 2016.

Goodenough JB, Longo M. Magnetic and Other Properties of Oxides

and Related Compounds. Landolt-Börnstein - Group III Condensed

Matter·Volume 4A. Hellwege K-H, Hellwege AM, editors. Springer-

Verlag Berlin Heidelberg; 1970.

Reller A, Williams T. Perovskites. Chemical chameleons. Chem Britain.

, 25, 1227–30.

West AR. Perovskite: A Solid-State Chemistry Chameleon, Illustrating

the Elements, Their Properties and Location in the Periodic Table. In

Springer, Berlin, Heidelberg; 2019, p. 1–32.

Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK.

Chemically diverse and multifunctional hybrid organic–inorganic

perovskites. Nat Rev Mater. 2017; 2, 16099.

Wang ZL, Kang ZC. Functional and Smart Materials. Boston, MA:

Springer US; 1998

Dang Y, Ju D, Wang L, Tao X. Recent progress in the synthesis of hybrid

halide perovskite single crystals. CrystEngComm. 2016, 18, 4476–84.

Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal Halide

Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and

Their Optical Properties. Chem Rev. 2019, 119, 3296–348.

Mitchell RH. Perovskites : modern and ancient. Almaz Press; 2002, 318


Navrotsky A, Weidner DJ. Perovskite : a structure of great interest to

geophysics and materials science. American Geophysical Union; 1989.


Von Hippel A. Ferroelectricity, Domain Structure, and Phase Transitions

of Barium Titanate. Rev Mod Phys. 1950, 22, 221–37.

Jonker GH, Van Santen JH. Ferromagnetic compounds of manganese

with perovskite structure. Physica. 1950, 16, 337–49.

Goodenough JB. Theory of the Role of Covalence in the Perovskite-

Type Manganites [La,M(II)] MnO3. Phys Rev. 1955, 100, 564–73.

Hazen RM, Finger LW, Angel RJ, Prewitt CT, Ross NL, Mao HK, et al.

Crystallographic description of phases in the Y-Ba-Cu-O superconductor.

Phys Rev B. 1987, 35, 7238–41.

Levy PM, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen

LH. Giant magnetoresistance in magnetic layered and granular materials.

Science. 1992, 256, 972–3.

Peña MA, Fierro JLG. Chemical Structures and Performance of

Perovskite Oxides. Chem Rev. 2001, 101, 1984–2018.

Megaw HD. Crystal structure of double oxides of the perovskite type.

Proc Phys Soc. 1946, 58, 133–52.

Goldschmidt VM. Die Gesetze der Krystallochemie.

Naturwissenschaften. 1926, 14, 477–85.

Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB,

Ghiringhelli LM, et al. New tolerance factor to predict the stability of

perovskite oxides and halides. Sci Adv. 2019, 5, 1–10.

Glazer AM. The classification of tilted octahedra in perovskites. Acta

Crystallogr Sect B Struct Crystallogr Cryst Chem. 1972, 28, 3384–92.

Goodenough JB. Electronic and ionic transport properties and other

physical aspects of perovskites. Reports Prog Phys. 2004, 67, 1915–93.

Señar?s ? -Rodr??guez MA, Goodenough JB. Magnetic and Transport

Properties of the System La 1-xSrxCoO3-?. J Solid State Chem. 1995, 118,


Goodenough J, Wold A, Arnott R, Menyuk N. Relationship Between

Crystal Symmetry and Magnetic Properties of Ionic Compounds

Containing Mn3+ . Phys Rev. 1961, 124, 373–84.

Kobayashi Y, Hernandez OJ, Sakaguchi T, Yajima T, Roisnel T,

Tsujimoto Y, et al. An oxyhydride of BaTiO3 exhibiting hydride

exchange and electronic conductivity. Nat Mater. 2012, 11, 507–11.

Tokura Y (Yoshinori). Colossal magnetoresistive oxides. Gordon and

Breach Science Publishers; 2000, 358 p.

Vasala S, Karppinen M. A 2B?B??O6 perovskites: A review. Vol. 43,

Progress in Solid State Chemistry. Pergamon; 2015. p. 1–36.

Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR. B-cation

arrangements in double perovskites. Prog Solid State Chem. 1993, 22,


Belik AA. Rise of A-site columnar-ordered A 2A?A??B4O12 quadruple

perovskites with intrinsic triple order. Dalt Trans. 2018, 47, 3209–17.

Kageyama H, Hayashi K, Maeda K, Attfield JP, Hiroi Z, Rondinelli JM,

et al. Expanding frontiers in materials chemistry and physics with

multiple anions. Nat Commun. 2018, 9, 772.

Park C, Snyder RL. Structures of High-Temperature Cuprate

Superconductors. J Am Ceram Soc. 1995, 78, 3171–94.

Santoro A, Beech F, Marezio M, Cava RJ. Crystal chemistry of

superconductors: A guide to the tailoring of new compounds. Phys C

Supercond. 1988, 156, 693–700.

Khare N. Handbook of high-temperature superconductor electronics.

Marcel Dekker; 2003.

Dickens PG, Whittingham MS. The tungsten bronzes and related

compounds. Q Rev Chem Soc. 1968, 22, 30–44.

Rao CNR, Gopalakrishnan J. New Directions in Solid State Chemistry.

second. Cambridge: Cambridge University Press; 1997.

Ruddlesden SN, Popper P. The compound Sr 3Ti 2O7 and its structure.

Acta Crystallogr. 1958, 11, 54–5.

Beznosikov B V., Aleksandrov KS. Perovskite-like crystals of the

Ruddlesden-Popper series. Crystallogr Reports. 2000, 45, 792–8.

AURIVILLIUS, B. Mixed Bismuth Oxides with Layer Lattices I. The

Structure Type of CaNb 2Bi 2O9. Ark Kemi. 1949, 1, 463–80.

Kendall KR, Navas C, Thomas JK, zur Loye H-C. Recent Developments

in Oxide Ion Conductors: Aurivillius Phases. Chem Mater. 1996, 8, 642–

Dion M, Ganne M, Tournoux M. Nouvelles familles de phases

MIMII2Nb3O10 a feuillets “perovskites.” Mater Res Bull. 1981, 16,


Jacobson AJ, Johnson JW, Lewandowski JT. Interlayer chemistry

between thick transition-metal oxide layers: synthesis and intercalation

reactions of K[Ca 2Nan-3NbnO 3n+1]. Inorg Chem. 1985, 24, 3727–9.

Cheetham AK, Rao CNR. There’s Room in the Middle. Science. 2007,

, 58–9.

Di Sante D, Stroppa A, Jain P, Picozzi S. Tuning the Ferroelectric

Polarization in a Multiferroic Metal–Organic Framework. J Am Chem

Soc. 2013, 135, 18126–30.

Gómez-Aguirre LC, Pato-Doldán B, Mira J, Castro-García S, Señarís-

Rodríguez MA, Sánchez-Andújar M, et al. Magnetic Ordering-Induced

Multiferroic Behavior in [CH3NH3][Co(HCOO)3] Metal–Organic

Framework. J Am Chem Soc. 2016, 138, 1122–5.

Bermúdez-García JM, Sánchez-Andújar M, Señarís-Rodríguez MA. A

New Playground for Organic–Inorganic Hybrids: Barocaloric Materials

for Pressure-Induced Solid-State Cooling. J Phys Chem Lett. 2017, 8,


Bermúdez-García JM, Sánchez-Andújar M, Yáñez-Vilar S, Castro-

García S, Artiaga R, López-Beceiro J, et al. Multiple phase and dielectric

transitions on a novel multi-sensitive [TPrA][M(dca) 3] (M: Fe 2+, Co 2+

and Ni 2+ ) hybrid inorganic–organic perovskite family. J Mater Chem C.

, 4, 4889–98.

Zhang W, Cai Y, Xiong R-G, Yoshikawa H, Awaga K. Exceptional

Dielectric Phase Transitions in a Perovskite-Type Cage Compound.

Angew Chemie Int Ed. 2010, 49, 6608–10.

Mautner FA, Cortés R, Lezama L, Rojo T. [N(CH 3)4][Mn(N3) 3]: A

Compound with a Distorted Perovskite Structure through Azido Ligands.

Angew Chemie Int Ed English. 1996 35, 78–80.

Gómez-Aguirre LC, Pato-Doldán B, Stroppa A, Yang L-M, Frauenheim

T, Mira J, et al. Coexistence of Three Ferroic Orders in the Multiferroic

Compound [(CH 3) 4N][Mn(N3)3] with Perovskite-Like Structure. Chem -

A Eur J. 2016, 22, 7863–70.

Wang X-Y, Gan L, Zhang S-W, Gao S. Perovskite-like Metal Formates

with Weak Ferromagnetism and as Precursors to Amorphous Materials.

Inorg Chem. 2004, 43, 4615–25.

Jain P, Dalal NS, Toby BH, Kroto HW, Cheetham AK. Order?Disorder

Antiferroelectric Phase Transition in a Hybrid Inorganic?Organic

Framework with the Perovskite Architecture. J Am Chem Soc. 2008,

, 10450–1.

Sánchez-Andújar M, Presedo S, Yáñez-Vilar S, Castro-García S, Shamir

J, Señarís-Rodríguez M a. Characterization of the order-disorder

dielectric transition in the hybrid organic-inorganic perovskite-like

formate Mn(HCOO)3[(CH3)2NH2]. Inorg Chem. 2010, 49, 1510–6.

Xie K-P, Xu W-J, He C-T, Huang B, Du Z-Y, Su Y-J, et al. Order–

disorder phase transition in the first thiocyanate-bridged double

perovskite-type coordination polymer: [NH 4]2[NiCd(SCN)6].

CrystEngComm. 2016, 18, 4495–8.

Schlueter J a, Manson JL, Geiser U. Structural and magnetic diversity in

tetraalkylammonium salts of anionic M[N(CN) 2]3- (M = Mn and Ni)

three-dimensional coordination polymers. Inorg Chem. 2005, 44, 3194–

Hill JA, Thompson AL, Goodwin AL. Dicyanometallates as Model

Extended Frameworks. J Am Chem Soc. 2016, 138, 5886–96.

Sun Y-L, Han X-B, Zhang W. Structural Phase Transitions and Dielectric

Switching in a Series of Organic-Inorganic Hybrid Perovskites ABX 3

(X=ClO4- or BF4-). Chem. A Eur J . 2017, 23, 11126–32.

Evans HA, Deng Z, Collings IE, Wu Y, Andrews JL, Pilar K, et al.

Polymorphism in M(H 2PO2)3 (M = V, Al, Ga) compounds with the

perovskite-related ReO 3 structure. Chem Commun. 2019, 55, 2964–7.

Kieslich G, Sun S, Cheetham T. An Extended Tolerance Factor Approach

for Organic-Inorganic Perovskites. Chem Sci. 2015

Becker M, Klüner T, Wark M. Formation of hybrid ABX 3 perovskite

compounds for solar cell application: First-principles calculations of

effective ionic radii and determination of tolerance factors. Dalt Trans.

Collings IE, Hill JA, Cairns AB, Cooper RI, Thompson AL, Parker JE, et

al. Compositional dependence of anomalous thermal expansion in

perovskite-like ABX 3 formates. Dalt Trans. 2016, 45, 4169–78.

Weller MT, Weber OJ, Henry PF, Di Pumpo AM, Hansen TC. Complete

structure and cation orientation in the perovskite photovoltaic

methylammonium lead iodide between 100 and 352 K. Chem Commun.

, 51, 4180–3.

Gómez-Aguirre LC, Pato-Doldán B, Stroppa A, Yáñez-Vilar S,

Bayarjargal L, Winkler B, et al. Room-Temperature Polar Order in

[NH 4][Cd(HCOO) 3 ] A Hybrid Inorganic–Organic Compound with a

Unique Perovskite Architecture. Inorg Chem. 2015, 54, 2109–16.

Carrell CJ, Carrell HL, Erlebacher J, Glusker JP. Structural aspects of

metal ion carboxylate interactions. J Am Chem Soc. 1988, 110, 8651–6.

Boström HLB, Hill JA, Goodwin AL. Columnar shifts as symmetry-

breaking degrees of freedom in molecular perovskites. Phys Chem Chem

Phys. 2016;18, 31881–94.

Jain P, Ramachandran V, Clark RJ, Hai DZ, Toby BH, Dalal NS, et al.

Multiferroic behavior associated with an order-disorder hydrogen

bonding transition in metal-organic frameworks (MOFs) with the

perovskite ABX 3 architecture. J Am Chem Soc. 2009,131, 13625–7.

Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, et al.

Switchable electric polarization and ferroelectric domains in a metal-

organic-framework. Quantum Mater. 2016, 1, 16012.

Boström HLB, Senn MS, Goodwin AL. Recipes for improper

ferroelectricity in molecular perovskites. Nat Commun. 2018, 9, 2380.

Bermúdez-García JM, Sánchez-Andújar M, Castro-García S, López-

Beceiro J, Artiaga R, Señarís-Rodríguez MA. Giant barocaloric effect in

the ferroic organic-inorganic hybrid [TPrA][Mn(dca) 3 ] perovskite under

easily accessible pressures. Nat Commun. 2017, 8, 15715.

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide

perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem

Soc. 2009, 131, 6050–1.

Tan Z-K, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, et

al. Bright light-emitting diodes based on organometal halide perovskite.

Nat Nanotechnol. 2014, 9, 687–92.

Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-

temperature solution-processed wavelength-tunable perovskites for

lasing. Nat Mater. 2014, 13, 476–80.

Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband

perovskite single-crystal photodetectors enabled by surface-charge

recombination. Nat Photonics. 2015, 9, 679–86.

Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H-H, Wang C, et al.

Sensitive X-ray detectors made of methylammonium lead tribromide

perovskite single crystals. Nat Photonics. 2016, 10, 333–9.

Yakunin S, Dirin DN, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko

O, et al. Detection of gamma photons using solution-grown single

crystals of hybrid lead halide perovskites. Nat Photonics. 2016, 10, 585–

Kumar Jena A, Kulkarni A, Miyasaka T. Halide Perovskite

Photovoltaics: Background, Status, and Future Prospects. Chem Rev.

Stoumpos CC, Mao L, Malliakas CD, Kanatzidis MG. Structure–Band

Gap Relationships in Hexagonal Polytypes and Low-Dimensional

Structures of Hybrid Tin Iodide Perovskites. Inorg Chem. 2017, 56, 56–

García-Fernández A, Bermúdez-García JM, Castro-García S, Llamas-

Saiz AL, Artiaga R, López-Beceiro J, et al. Phase Transition, Dielectric

Properties, and Ionic Transport in the [(CH3)2NH2]PbI3 Organic–

Inorganic Hybrid with 2H-Hexagonal Perovskite Structure. Inorg Chem.

, 56, 4918–27.

García-Fernández A, Juarez-Perez EJ, Bermúdez-García JM, Llamas-

Saiz AL, Artiaga R, López-Beceiro JJ, et al. Hybrid lead halide

[(CH3)2NH 2]PbX 3 (X = Cl ? and Br ? ) hexagonal perovskites with

multiple functional properties. J Mater Chem C. 2019

Aleksandrov KS, Beznosikov V V. Hierarchies of perovskite-like

crystals (Review). Phys Solid State. 1997, 39, 695–715.

Wei F, Deng Z, Sun S, Xie F, Kieslich G, Evans DM, et al. The synthesis,

structure and electronic properties of a lead-free hybrid inorganic–

organic double perovskite (MA)2KBiCl6 (MA = methylammonium).

Mater Horiz. 2016, 6.

Mitzi DB. Synthesis, Structure, and Properties of Organic-Inorganic

Perovskites and Related Materials. In Wiley-Blackwell; 2007, p. 1–121.

Saparov B, Mitzi DB. Organic–Inorganic Perovskites: Structural

Versatility for Functional Materials Design. Chem Rev. 2016, 116, 4558–

Mao L, Stoumpos CC, Kanatzidis MG. Two-Dimensional Hybrid Halide

Perovskites: Principles and Promises. J Am Chem Soc. 2019, 141, 1171–

Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, et al. Hybrid Dion–

Jacobson 2D Lead Iodide Perovskites. J Am Chem Soc. 2018, 140,


Li Y, Mili? J V., Ummadisingu A, Seo J-Y, Im J-H, Kim H-S, et al.

Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion–

Jacobson Two-Dimensional Perovskite Solar Cells. Nano Lett. 2019, 19,


García-Fernández A, Bermúdez-García JM, Castro-García S, Llamas-

Saiz AL, Artiaga R, López-Beceiro JJ, et al. [(CH 3)2NH2]7Pb4 X15 (X =

Cl – and Br – ), 2D-Perovskite Related Hybrids with Dielectric

Transitions and Broadband Photoluminiscent Emission. Inorg Chem.

, 57, 3215–22.




How to Cite

Garcia, A., Juarez-Pérez, E. J., Castro-Garcia, S., Sanchez-Andujar, M., & Senaris-Rodriguez, M. A. (2021). Hybrid organic-inorganic perovskites: a spin-off of oxidic perovskites. OAJ Materials and Devices, 5(1). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/114