Chap. 20 - A review of the synthesis of single-crystal 1D perovskite nanostructures by the hydrothermal method

(1) Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science NASU, Ukraine (2) LLC NanoTechCenter, Ukraine

Authors

  • Olha Kovalenko (1) Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science NASU, Ukraine (2) LLC NanoTechCenter, Ukraine
  • Andrey Ragulya

Keywords:

PEROVSKITE, NANOSTRUCTURE, ANISOTROPY, CRYSTALLIZATION

Abstract

Recently, the one-dimensional ferroelectric perovskite nanostructures have been of high interest due to a number of unique properties that allow the improvement of the current ceramic nanotechnologies. In order to receive the nanoparticles of a given structure and morphology it is quite important to expand and summary the knowledge regarding the physicochemical processes of the formation and growth of a new phase. Therefore, in this paper, based on the existing works, an attempt to describe the influence of the crystallization mechanism as well as hydrothermal synthesis parameters (such as the reagent nature, pH, concentration, surfactant, heat treatment mode) on the peculiarities of the anisotropic growth and the formation of the one-dimensional perovskite nanostructures was carried out.

References

Assirey, E. A. R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal vol. 27 817–829 (2019).

Lone, I. H. et al. Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism. Nanoscale Research Letters vol. 14 1–12 (2019).

Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Classic Texts in the Physical Sciences). (Oxford University Press, USA, 2001).

Shen, I-Yeu, Guozhong Cao, and H.-L. H. Methods for forming lead zirconate titanate nanoparticles. U.S. Patent No. 9,065,050 https://patents.google.com/patent/US9065050B2/en (2015).

Ren, Z. et al. Shape evolution of Pb (Zr,Ti)O3 nanocrystals under hydrothermal conditions. J. Am. Ceram. Soc. 90, 2645–2648 (2007).

Zhiqun, L. & Wang, J. Method of controlling shape of synthesized ferroelectric oxide nanocrystal particles. (2015).

Kang, S. O. et al. Synthesis of single-crystal barium titanate nanorods transformed from potassium titanate nanostructures. Mater. Res. Bull. 43, 996–1003 (2008).

Chen, Y., He, M., Peng, J., Sun, Y. & Liang, Z. Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 3, 1500392 (2016).

Xia, Y. et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. (2003).

Kuchibhatla, S. V. N. T., Karakoti, A. S., Bera, D. & Seal, S. One dimensional nanostructured materials. Progress in Materials Science vol. 52 699–913 (2007).

Wang, Z. L. Oxide nanobelts and nanowires--growth, properties and applications. J. Nanosci. Nanotechnol. 8, 27–55 (2008).

Liang, L., Kang, X., Sang, Y. & Liu, H. One-dimensional ferroelectric nanostructures: Synthesis, properties, and applications. Advanced Science vol. 3 1500358 (2016).

Rørvik, P. M., Grande, T. & Einarsrud, M. A. One-dimensional nanostructures of ferroelectric perovskites. Advanced Materials vol. 23 4007–4034 (2011).

Hu, J., Odom, T. W. & Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research vol. 32 435–445 (1999).

Li, X., Sun, M., Wei, X., Shan, C. & Chen, Q. 1D piezoelectric material based nanogenerators: Methods, materials and property optimization. Nanomaterials vol. 8 (2018).

Reshmi Varma, P. C. Low-Dimensional Perovskites. in Perovskite Photovoltaics 197–229 (Elsevier, 2018). doi:10.1016/b978-0-12-812915-9.00007-1.

Xue, P., Wu, H., Lu, Y. & Zhu, X. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review. J. Mater. Sci. Technol. 34, 914–930 (2018).

Morozovska, A. N., Eliseev, E. A. & Glinchuk, M. D. Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. Phys. B Condens. Matter 387, 358–366 (2006).

Kim, H. J. et al. High mobility in a stable transparent perovskite oxide. Appl. Phys. Express 5, 061102 (2012).

Huang, J., Shao, Y. & Dong, Q. Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? Journal of Physical Chemistry Letters vol. 6 3218–3227 (2015).

Liu, Y., Yang, Z. & Liu, S. F. Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science vol. 5 1700471 (2018).

Dhand, C. et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances vol. 5 105003–105037 (2015).

Modeshia, D. R. & Walton, R. I. Solvothermal synthesis of perovskites and pyrochlores: Crystallisation of functional oxides under mild conditions. Chemical Society Reviews vol. 39 4303–4325 (2010).

Eckert, J. O., Hung-Houston, C. C., Gersten, B. L., Lencka, M. M. & Riman, R. E. Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929–2939 (1996).

C. G. Hu, †,‡ et al. Size-Manipulable Synthesis of Single-Crystalline BaMnO3 and BaTi1/2Mn1/2O3 Nanorods/Nanowires. (2006) doi:10.1021/JP063459+.

Ahmed, M. A., Seddik, U., Okasha, N. & Imam, N. G. One-dimensional nanoferroic rods; synthesis and characterization. J. Mol. Struct. 1099, 330–339 (2015).

Urban, J. J., Yun, W. S., Gu, Q. & Park, H. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186–1187 (2002).

Byrappa, K. & Adschiri, T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials vol. 53 117–166 (2007).

Chen, D., Jiao, X. & Zhang, M. Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors. J. Eur. Ceram. Soc. 20, 1261–1265 (2000).

Araújo, F. G. S., Mendes Filho, A. A. & Pinto, L. C. B. Influence of the processing conditions on the properties of hydrothermal processed barium titanium oxide powders. Scr. Mater. 43,

–452 (2000).

Inada, M., Enomoto, N., Hayashi, K., Hojo, J. & Komarneni, S. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol. Ceram. Int. 41, 5581–5587 (2015).

Vollmer, M. Kinetics of Phase Formation (Kinetik der Phasenbildung). (1939).

Delmon, B. Kinetics of heterogeneous reactions (Introduction a la Cinétique Hétérogène). (1969).

Nguyen, T.-D. & Do, T.-O. Size- and Shape-Controlled Synthesis of Monodisperse Metal Oxide and Mixed Oxide Nanocrystals. in Nanocrystal (InTech, 2011). doi:10.5772/17054.

Cheng, B., Tribello, G. A. & Ceriotti, M. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit. J. Chem. Phys. 147, 104707 (2017).

Schmelzer, J. The vitreous state: thermodynamics, structure, rheology, and crystallization. in The Vitreous State (Springer Berlin Heidelberg, 1995). doi:10.1007/978-3-642-34633-0_2.

Canu, G. & Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm vol. 19

–3891 (2017).

Joshi, U. A. & Lee, J. S. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. Small 1, 1172–1176 (2005).

de Oliveira, L. A. S., López-Ruiz, R. & Pirota, K. R. Multiferroic and heterogeneous ferromagnetic nanowires prepared by sol-gel, electrodeposition, and combined techniques. in Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications 105–124 (Elsevier, 2015). doi:10.1016/B978-0-08-100164-6.00003-5.

Henney, N. The Solid State Chemistry [Russian translation]. https://fdocuments.us/document/effect-of-annealing-on-preliminary-treatment-of-aluminum-alloy-1421-by-low-energy.html (1971).

HERTL, W. Kinetics of Barium Titanate Synthesis. J. Am. Ceram. Soc. 71, 879–883 (1988).

Zhang, S., Jiang, F., Qu, G. & Lin, C. Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol-gel and surfactant-templated methods. Mater. Lett. 62, 2225–2228 (2008).

Vijayalakshmi, R., V. R. Synthesis and characterization of cubic BaTiO3 nanorods via facile hydrothermal method and their optical properties. Dig J Nanomater Bios 511–517 (2010).

Zhang, G. et al. Colossal Roomerature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates. ACS Nano 9, 7164–7174 (2015).

Joshi, U. A., Yoon, S., Balk, S. & Lee, J. S. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: A structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006).

Xie, B. et al. Mechanical force-driven growth of elongated BaTiO3 lead-free ferroelectric nanowires. Ceram. Int. 43, 2969–2973 (2017).

Yao, L., Pan, Z., Zhai, J. & Chen, H. H. D. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale 9, 4255–4264 (2017).

Zhou, Z., Tang, H. & Sodano, H. A. Vertically aligned arrays of BaTiO3 Nanowires. ACS Appl. Mater. Interfaces 5, 11894–11899 (2013).

Lencka, M. M. & Riman, R. E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 5, 61–70 (1993).

Lencka, M. M. & Riman, R. E. Thermodynamics of the Hydrothermal Synthesis of Calcium Titanate with Reference to Other Alkaline-Earth Titanates. Chem. Mater. 7, 18–25 (1995).

Yang, S. et al. Formation mechanism of freestanding CH3NH3PbI3 functional crystals: In situ transformation vs dissolution-crystallization. Chem. Mater. 26, 6705–6710 (2014).

Dang, F. et al. Growth of BaTiO3 nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis. Chem. Eng. J. 170, 333–337 (2011).

Jana, N. R., Chen, Y. & Peng, X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16, 3931–3935 (2004).

Thirumalairajan, S. et al. Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv. 3, 7549–7561 (2013).

Li, Q. et al. Ethylene glycol-mediated synthesis of nanoporous anatase TiO2 rods and rutile TiO2 self-assembly chrysanthemums. (2011).

Cai, W. et al. A simple and controllable hydrothermal route for the synthesis of monodispersed cube-like barium titanate nanocrystals. Ceram. Int. 41, 4514–4522 (2015).

Loganathan, A., Manoharan, D. & Nesamony, V. J. Cubic phase stabilization of Barium titanate nanorods by rapid quenching technique. Mater. Lett. 186, 305–307 (2017).

Downloads

Published

2021-01-14

How to Cite

Kovalenko, O., & Ragulya, A. (2021). Chap. 20 - A review of the synthesis of single-crystal 1D perovskite nanostructures by the hydrothermal method: (1) Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science NASU, Ukraine (2) LLC NanoTechCenter, Ukraine. OAJ Materials and Devices, 5(2). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/121