Graphene-titanate photocatalyst and its use in an air purifying device - prototype demonstration in operational environment


  • Tomasz Baran SajTom Light Future
  • Szymon Wojtyła SajTom Light Future


Photocatalysis, semiconductors, volatile organic compounds, air purifer, air pollutants, GRAPHENE, TITANATE, NiTiO3, CuTiO3, COPPER TITANATE/GRAPHENE OXIDE, REDUCED GRAPHENE OXIDE


Volatile organic compounds constitute a group of dangerous air pollutants, which can be eliminated by the photocatalytic route. In this work we demonstrated the hydrothermal synthesis of photocatalytic composite CTO-RGO based on copper titanate and reduced graphene oxide. The material is composed of three phases namely rutile, tenorite and reduced graphene oxide, and it shows absorption in a broad range of light (ultraviolet and visible light). CTO-RGO showed an excellent photocatalytic activity in a laboratory scale experiment. Therefore it has been used as an active material in air purifying devices. A prototype was tested in operational environments such as apartment, fitness center and industrial places. Obtained results confirmed the significant decrease of VOC level due to photocatalytic degradation of pollutants.


I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou, Front. Public Health 2020, 8, DOI 10.3389/fpubh.2020.00014.

M. Kampa, E. Castanas, Environmental Pollution 2008, 151, 362–367.

T. Ohura, T. Amagai, X. Shen, S. Li, P. Zhang, L. Zhu, Atmospheric Environment 2009, 43, 6352–6359.

C. Rösch, T. Kohajda, S. Röder, M. von Bergen, U. Schlink, Atmospheric Pollution Research 2014, 5, 129–137.

S. Wojty?a, P. Klama, K. ?piewak, T. Baran, Int. J. Environ. Sci. Technol. 2019, DOI 10.1007/s13762-019-02444-x.

S. O. Hay, T. Obee, Z. Luo, T. Jiang, Y. Meng, J. He, S. C. Murphy, S. Suib, Molecules 2015, 20, 1319–1356.

S. Wojty?a, K. ?piewak, T. Baran, Journal of Photochemistry and Photobiology A: Chemistry 2020, 391, 112355.

Y. Paz, Applied Catalysis B: Environmental 2010, 99, 448–460.

T. Baran, S. Wojty?a, A. Minguzzi, S. Rondinini, A. Vertova, Applied Catalysis B: Environmental 2019, 244, 303–312.

M. Kask, J. Bolobajev, M. Krichevskaya, Chemical Engineering Journal 2020, 399, 125815.

C. Wang, J. Li, G. Mele, G.-M. Yang, F.-X. Zhang, L. Palmisano, G. Vasapollo, Applied Catalysis B: Environmental 2007, 76, 218–226.

S. Cataldo, A. Iannì, V. Loddo, E. Mirenda, L. Palmisano, F. Parrino, D. Piazzese, Separation and Purification Technology 2016, 171, 101–111.

A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 317, 366–376.

W. Ji, T. Shen, J. Kong, Z. Rui, Y. Tong, Ind. Eng. Chem. Res. 2018, 57, 12766–12773.

T. Baran, S. Wojty?a, A. Vertova, A. Minguzzi, S. Rondinini, Journal of Electroanalytical Chemistry 2018, 808, 395–402.

W. E. Ghann, H. Kang, J. Uddin, F. A. Chowdhury, S. I. Khondaker, M. Moniruzzaman, M. H. Kabir, M. M. Rahman, ChemEngineering 2019, 3, 7.

B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie, Physica Status Solidi (b) 2015, 252, 1700–1710.

K. Bustos-Ramirez, C. E. Barrera-Diaz, M. De Icaza, A. L. Martínez-Hernández, C. Velasco-Santos, “Photocatalytic Activity in Phenol Removal of Water from Graphite and Graphene Oxides: Effect of Degassing and Chemical Oxidation in the Synthesis Process,” 2015.




How to Cite

Baran, T., & Wojtyła, S. (2021). Graphene-titanate photocatalyst and its use in an air purifying device - prototype demonstration in operational environment. OAJ Materials and Devices, 5(1). Retrieved from