Naturally Layered Aurivillius Phases: Flexible Scaffolds for the Design of Multiferroic Materials


  • Jennifer Halpin Tyndall National Institute
  • Lynette Keeney




The Aurivillius layer-structures, described by the general formula Bi2O2(Am-1BmO3m+1), are naturally 2-dimensionally nanostructured. They are very flexible
frameworks for a wide variety of applications, given that different types of cations can beaccommodated both at the A- and B-sites. In this review article, we describe how the Aurivillius phases are a particularly attractive class of oxides for the design of prospective single phase multiferroic systems for multi-state data storage applications, as they offer the potential to include substantial amounts of magnetic cations within a strongly ferroelectric system. The ability to vary m yields differing numbers of symmetrically distinct B-site locations over which the magnetic cations can be distributed and generates driving forces for cation partitioning and magnetic ordering. We discuss how out-of-phase boundary and
stacking fault defects can further influence local stoichiometry and the extent of cation partitioning in these intriguing material systems.


Aurivillius B. Mixed bismuth oxides with layer lattices. 2. Structure of

Bi4Ti3O12. Arkiv for Kemi. 1950;1(6):499-512.

Keeney L, Smith RJ, Palizdar M, Schmidt M, Bell AJ, Coleman JN, et al.

Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Sub-Unit Cell

Thickness. Advanced Electronic Materials. 2020;n/a(n/a):1901264.

Keeney L, Maity T, Schmidt M, Amann A, Deepak N, Petkov N, et al. Magnetic

Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at

Room Temperature. Journal of the American Ceramic Society. 2013;96(8):2339-57.

Zurbuchen M, Tian W, Pan X, Fong D, K. Streiffer S, E. Hawley M, et al.

Morphology, structure, and nucleation of out-of-phase boundaries (OPBs) in epitaxial

films of layered oxides2007. 1439-71 p.

Birenbaum AY, Ederer C. Controlling the cation distribution and electric

polarization with epitaxial strain in Aurivillius-phase Bi5FeTi3O15. Applied Physics

Letters. 2016;108(8):082903.

De Araujo C-P, Cuchiaro J, McMillan L, Scott M, Scott J. Fatigue-free

ferroelectric capacitors with platinum electrodes. Nature. 1995;374(6523):627-9.

Park B, Kang B, Bu S, Noh T, Lee J, Jo W. Lanthanum-substituted bismuth

titanate for use in non-volatile memories. Nature. 1999;401(6754):682-4.

Kusainova AM, Stefanovich SY, Irvine JTS, Lightfoot P. Structure–property

correlations in the new ferroelectric Bi5PbTi3O14Cl and related layered oxyhalide

intergrowth phases. J Mater Chem. 2002;12(12):3413-8.

Campanini M, Trassin M, Ederer C, Erni R, Rossell MD. Buried in-plane

ferroelectric domains in Fe-doped single-crystalline Aurivillius thin films. ACS Applied

Electronic Materials. 2019;1(6):1019-28.

Moure A. Review and Perspectives of Aurivillius Structures as a Lead-Free

Piezoelectric System. Applied Sciences-Basel. 2018;8(1).

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal,

volumetric and morphology data. Journal of applied crystallography. 2011;44(6):1272-

Newnham RE, Wolfe RW, Dorrian JF. Structural basis of ferroelectricity in the

bismuth titanate family. Materials Research Bulletin. 1971;6(10):1029-39.

Millán P, Castro A, Torrance JB. The first doping of lead2+ into the bismuth

oxide layers of the aurivillius oxides. Materials Research Bulletin. 1993;28(2):117-22.

Durán-Martín P, Castro A, Millán P, Jiménez B. Influence of Bi-site Substitution

on the Ferroelectricity of the Aurivillius Compound Bi2SrNb2O9. Journal of Materials

Research. 2011;13(9):2565-71.

Liu S, Yan SQ, Luo H, Yao LL, Hu ZW, Huang SX, et al. Enhanced

magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics.

Journal of Materials Science. 2018;53(2):1014-23.

Co K, Sun F-C, Alpay SP, Nayak SK. Polarization rotation in Bi4Ti3O12 by

isovalent doping at the fluorite sublattice. Physical Review B. 2019;99(1):014101.

McCabe EE, Jones IP, Zhang D, Hyatt NC, Greaves C. Crystal structure and

electrical characterisation of Bi2NbO5F: an Aurivillius oxide fluoride. Journal of

Materials Chemistry. 2007;17(12):1193.

Goodenough JB. Electronic and ionic transport properties and other physical

aspects of perovskites. Reports on Progress in Physics. 2004;67(11):1915-93.

Irie H, Miyayama M, Kudo T. Structure dependence of ferroelectric properties

of bismuth layer-structured ferroelectric single crystals. Journal of Applied Physics.


Armstrong RA, Newnham RE. Bismuth titanate solid solutions. Materials

Research Bulletin. 1972;7(10):1025-34.

Chen J, Yun Q, Gao W, Bai Y, Nie C, Zhao S. Improved ferroelectric and

fatigue properties in Zr doped Bi 4 Ti 3 O 12 thin films. Materials Letters. 2014;136:11-

Suárez DY, Reaney IM, Lee WE. Relation between tolerance factor and Tc in

Aurivillius compounds. Journal of Materials Research. 2011;16(11):3139-49.

Lomanova NA, Semenov VG, Panchuk VV, Gusarov VV. Structural changes in

the homologous series of the Aurivillius phases Bin+1Fen?3Ti3O3n+3. Journal of

Alloys and Compounds. 2012;528:103-8.

Lomanova NA, Morozov MI, Ugolkov VL, Gusarov VV. Properties of aurivillius

phases in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials. 2006;42(2):189-95.

Zhang F, Li Y, Gu H, Gao X. Local orderings in long-range-disordered bismuth-

layered intergrowth structure. Journal of Solid State Chemistry. 2014;212:165-70.

Zhang F, Wahyudi O, Liu Z, Gu H, Li Y. Preparation and electrical properties of

a new-type intergrowth bismuth layer-structured (Bi 3 TiNbO 9 ) 1 (Bi 4 Ti 3 O 12 ) 2

ceramics. Journal of Alloys and Compounds. 2018;753:54-9.

Yi ZG, Wang Y, Li YX, Yin QR. Ferroelectricity in intergrowth Bi3TiNbO9–

Bi4Ti3O12 ceramics. Journal of Applied Physics. 2006;99(11):114101.

Zhang DL, Huang WC, Chen ZW, Zhao WB, Feng L, Li M, et al. Structure

Evolution and Multiferroic Properties in Cobalt Doped Bi4NdTi3Fe1-xCoxO15-

Bi3NdTi2Fe1-xCoxO12-delta Intergrowth Aurivillius Compounds. Scientific Reports.


Djani H, Bousquet E, Kellou A, Ghosez P. First-principles study of the

ferroelectric Aurivillius phase Bi2WO6. Physical Review B. 2012;86(5).

Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding

ferroelectricity in layered perovskites: new ideas and insights from theory and

experiments. Dalton Trans. 2015;44(23):10543-58.

Kubel F, Schmid H. X-ray room temperature structure from single crystal data,

powder diffraction measurements and optical studies of the aurivillius phase

Bi5(Ti3Fe)O15. Ferroelectrics. 1992;129(1):101-12.

Hervoches CH, Irvine JTS, Lightfoot P. Two high-temperature paraelectric

phases inSr0.85Bi2.1Ta2O9. Physical Review B. 2001;64(10).

Hervoches CH, Snedden A, Riggs R, Kilcoyne SH, Manuel P, Lightfoot P.

Structural Behavior of the Four-Layer Aurivillius-Phase Ferroelectrics SrBi4Ti4O15 and

Bi5Ti3FeO15. Journal of Solid State Chemistry. 2002;164(2):280-91.

Zhang DJ, Su J, Lu CJ, Zhang YC, Zhang C, Li Y, et al. Room-temperature

multiferroic properties of sol-gel derived 0.5LaFeO(3)-Bi4Ti3O12 thin films with layered

perovskite. Journal of Alloys and Compounds. 2017;709:729-34.

Liang KL, Sun LJ, Cao DR, Zhang C, Luo L, Li J, et al. Study on Dielectric,

Ferroelectric, and Magnetic Properties of 0.5 LaFe0.5Co0.5O3-Bi4Ti3O12 Multiferroic

Thin Films. Ieee Transactions on Magnetics. 2018;54(11).

Birenbaum AY, Ederer C. Potentially multiferroic Aurivillius phaseBi5FeTi3O15:

Cation site preference, electric polarization, and magnetic coupling from first

principles. Physical Review B. 2014;90(21).

Perez-Mato JM, Blaha P, Schwarz K, Aroyo M, Orobengoa D, Etxebarria I, et

al. Multiple instabilities inBi4Ti3O12: A ferroelectric beyond the soft-mode paradigm.

Physical Review B. 2008;77(18).

Rae AD, Thompson JG, Withers RL, Willis AC. Structure refinement of

commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallographica

Section B. 1990;46(4):474-87.

Snedden A, Hervoches CH, Lightfoot P. Ferroelectric phase transitions in ${

mathrm{SrBi}}_{2}{mathrm{Nb}}_{2}{mathrm{O}}_{9}$ and ${mathrm{Bi}}_{5}{

mathrm{Ti}}_{3}{mathrm{FeO}}_{15}:$ A powder neutron diffraction study. Physical

Review B. 2003;67(9):092102.

Shimakawa Y, Kubo Y, Tauchi Y, Kamiyama T, Asano H, Izumi F. Structural

distortion and ferroelectric properties of SrBi2(Ta1?xNbx)2O9. Applied Physics Letters.


Li J-B, Huang YP, Rao GH, Liu GY, Luo J, Chen JR, et al. Ferroelectric

transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Applied Physics

Letters. 2010;96(22):222903.

Noguchi Y, Miyayama M, Kudo T. Ferroelectric properties of intergrowth

Bi4Ti3O12–SrBi4Ti4O15 ceramics. Applied Physics Letters. 2000;77(22):3639-41.

Nakashima S, Fujisawa H, Ichikawa S, Park JM, Kanashima T, Okuyama M, et

al. Structural and ferroelectric properties of epitaxial Bi5Ti3FeO15 and natural-

superlattice-structured Bi4Ti3O12–Bi5Ti3FeO15 thin films. Journal of Applied Physics.


Olivera R, Fuentes ME, Espinosa F, García M, Macías E, Durán A, et al. Why

ferroelectricity? synchrotron radiation and ab initio answers. Revista mexicana de

física. 2007;53:113-7.

Watanabe T, Funakubo H. Controlled crystal growth of layered-perovskite thin

films as an approach to study their basic properties. Journal of Applied Physics.


Watanabe T, Saiki A, Saito K, Funakubo H. Film thickness dependence of

ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by

metalorganic chemical vapor deposition. Journal of Applied Physics. 2001;89(7):3934-

Roy A, Prasad R, Auluck S, Garg A. Engineering polarization rotation in

ferroelectric bismuth titanate. Applied Physics Letters. 2013;102(18):182901.

Song DP, Yang J, Wang Y. Focus on the ferroelectric polarization behavior of

four-layered Aurivillius multiferroic thin film. Ceramics International. 2019;45(8):10080-

Shimakawa Y, Kubo Y, Nakagawa Y, Kamiyama T, Asano H, Izumi F. Crystal

structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Applied

Physics Letters. 1999;74(13):1904-6.

Bao ZH, Yao YY, Zhu JS, Wang YN. Study on ferroelectric and dielectric

properties of niobium doped Bi4Ti3O12 ceramics and thin films prepared by PLD

method. Materials Letters. 2002;56(5):861-6.

Noguchi Y, Miyayama M. Large remanent polarization of vanadium-doped

Bi4Ti3O12. Applied Physics Letters. 2001;78(13):1903-5.

Wederni MA, Kraiem S, Mnassri R, Rahmouni H, Khirouni K. Ytterbium doping

effects on structural, optical and electrical properties of Bi4Ti3O12 system. Ceramics

International. 2018;44(17):21893-901.

Hao H, Liu H, Ouyang S. Structure and ferroelectric property of Nb-doped

SrBi4Ti4O15 ceramics. Journal of Electroceramics. 2007;22(4):357-62.

Onodera A, Mouri S, Fukunaga M, Hiramatsu S, Takesada M, Yamashita H.

Phase Transition in Bi-Layered Oxides with Five Perovskite Layers. Japanese Journal

of Applied Physics. 2006;45(12):9125-8.

Xing X, Cao F, Peng Z, Xiang Y. The effects of oxygen vacancies on the

electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Current Applied

Physics. 2018;18(10):1149-57.

Takahashi M, Noguchi Y, Miyayama M. Electrical Conduction Mechanism in

Bi4Ti3O12Single Crystal. Japanese Journal of Applied Physics. 2002;41(Part 1, No.


Tang Y, Shen Z-Y, Du Q, Zhao X, Wang F, Qin X, et al. Enhanced pyroelectric

and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics. Journal

of the European Ceramic Society. 2018;38(16):5348-53.

Peng Z, Chen Q, Chen Y, Xiao D, Zhu J. Microstructure and electrical

properties in W/Nb co-doped Aurivillius phase Bi 4 Ti 3 O 12 piezoelectric ceramics.

Materials Research Bulletin. 2014;59:125-30.

Yuan J, Nie R, Chen Q, Xing J, Zhu J. Evolution of structural distortion and

electric properties of BTN-based high-temperature piezoelectric ceramics with

tungsten substitution. Journal of Alloys and Compounds. 2019;785:475-83.

Long C, Fan H, Li M, Dong G, Li Q. Crystal structure and enhanced

electromechanical properties of Aurivillius ferroelectric ceramics,

Bi4Ti3?x(Mg1/3Nb2/3)xO12. Scripta Materialia. 2014;75:70-3.

Bekhtin MA, Bush AA, Kamentsev KE, Segalla AG. Preparation and dielectric

and piezoelectric properties of Bi3TiNbO9, Bi2CaNb2O9, and Bi2.5Na0.5Nb2O9

ceramics doped with various elements. Inorganic Materials. 2016;52(5):510-6.

Wang Q, Wang C-M, Wang J-F, Zhang S. High performance Aurivillius-type

bismuth titanate niobate (Bi 3 TiNbO 9 ) piezoelectric ceramics for high temperature

applications. Ceramics International. 2016;42(6):6993-7000.

Larsen P, Dormans G, Taylor D, Van Veldhoven P. Ferroelectric properties and

fatigue of PbZr0. 51Ti0. 49O3 thin films of varying thickness: Blocking layer model.

Journal of applied physics. 1994;76(4):2405-13.

Lee J-K, Kim C-H, Suh H-S, Hong K-S. Correlation between internal stress

and ferroelectric fatigue in Bi 4? x La x Ti 3 O 12 thin films. Applied physics letters.


Yao YY, Song CH, Bao P, Su D, Lu XM, Zhu JS, et al. Doping effect on the

dielectric property in bismuth titanate. Journal of Applied Physics. 2004;95(6):3126-30.

Li X, Chen Z, Sheng L, Li L, Bai W, Wen F, et al. Remarkable piezoelectric

activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature

piezoelectric ceramics. Journal of the European Ceramic Society. 2019;39(6):2050-7.

Roy M, Bala I, Barbar SK, Jangid S, Dave P. Synthesis, structural and

electrical properties of La and Nb modified Bi4Ti3O12 ferroelectric ceramics. Journal

of Physics and Chemistry of Solids. 2011;72(11):1347-53.

Villegas M, Caballero AC, Moure C, Durán P, Fernández JF. Factors Affecting

the Electrical Conductivity of Donor-Doped Bi4Ti3O12 Piezoelectric Ceramics. Journal

of the American Ceramic Society. 1999;82(9):2411-6.

Bai Y, Chen J, Tian R, Zhao S. Enhanced multiferroic and magnetoelectric

properties of Ho, Mn co-doped Bi5Ti3FeO15 films. Materials Letters. 2016;164:618-22.

Cao L, Ding Z, Liu X, Ren J, Chen Y, Ouyang M, et al. Photovoltaic properties

of Aurivillius Bi4NdTi3FeO15 ceramics with different orientations. Journal of Alloys and

Compounds. 2019;800:134-9.

Wang T, Deng H, Meng X, Cao H, Zhou W, Shen P, et al. Tunable polarization

and magnetization at room-temperature in narrow bandgap Aurivillius Bi 6 Fe 2?x Co

x/2 Ni x/2 Ti 3 O 18. Ceramics International. 2017;43(12):8792-9.

Yin X, Li X, Gu W, Zou W, Liu H, Zhu L, et al. Morphology effect on

photocatalytic activity in Bi3Fe0.5Nb1.5O9. Nanotechnology. 2018;29(26):265706.

Du X, Huang W, He S, Santhosh Kumar T, Hao A, Qin N, et al. Dielectric,

ferroelectric, and photoluminescent properties of Sm-doped Bi4Ti3O12 thin films

synthesized by sol-gel method. Ceramics International. 2018;44(16):19402-7.

Bokolia R, Thakur OP, Rai VK, Sharma SK, Sreenivas K. Dielectric,

ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric

ceramics. Ceramics International. 2015;41(4):6055-66.

Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials.

Nature. 2006;442(7104):759-65.

Spaldin NA, Ramesh R. Advances in magnetoelectric multiferroics. Nat Mater.


Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy A, et

al. Tunnel junctions with multiferroic barriers. Nature materials. 2007;6(4):296-302.

Manipatruni S, Nikonov DE, Lin CC, Gosavi TA, Liu H, Prasad B, et al.

Scalable energy-efficient magnetoelectric spin-orbit logic. Nature. 2019;565(7737):35-

Manipatruni S, Nikonov DE, Young IA. Beyond CMOS computing with spin and

polarization. Nature Physics. 2018;14(4):338-43.

Hill NA. Why Are There so Few Magnetic Ferroelectrics? The Journal of

Physical Chemistry B. 2000;104(29):6694-709.

Catalan G, Scott JF. Physics and Applications of Bismuth Ferrite. Advanced

Materials. 2009;21(24):2463-85.

Schmidt M, Amann A, Keeney L, Pemble ME, Holmes JD, Petkov N, et al.

Absence of Evidence ? Evidence of Absence: Statistical Analysis of Inclusions in

Multiferroic Thin Films. Scientific Reports. 2014;4(1):5712.

Faraz A, Ricote J, Jimenez R, Maity T, Schmidt M, Deepak N, et al. Exploring

ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase

thin films. Journal of Applied Physics. 2018;123(12):124101.

Keeney L, Kulkarni S, Deepak N, Schmidt M, Petkov N, Zhang PF, et al. Room

temperature ferroelectric and magnetic investigations and detailed phase analysis of

Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films. Journal of Applied Physics.


Zhai XF, Grutter AJ, Yun Y, Cui ZZ, Lu YL. Weak magnetism of Aurivillius-type

multiferroic thin films probed by polarized neutron reflectivity. Physical Review

Materials. 2018;2(4).

Martin LW, Chu YH, Ramesh R. Advances in the growth and characterization

of magnetic, ferroelectric, and multiferroic oxide thin films. Materials Science and

Engineering: R: Reports. 2010;68(4-6):89-133.

de Gennes PG. Effects of Double Exchange in Magnetic Crystals. Physical

Review. 1960;118(1):141-54.

Prasad NV, Kumar GS. Magnetic and magnetoelectric measurements on rare-

earth-substituted five-layered Bi6Fe2Ti3O18 compound. Journal of Magnetism and

Magnetic Materials. 2000;213(3):349-56.

Gu W, Li XN, Sun SJ, Zhu LY, Fu ZP, Lu YL. Magnetocrystalline anisotropy in

the Co/Fe codoped Aurivillius oxide with different perovskite layer number. Journal of

the American Ceramic Society. 2018;101(6):2417-27.

Cui ZZ, Zhai XF, Chuang YD, Xu H, Huang HL, Wang JL, et al. Resonant

inelastic x-ray scattering study of Bi6Fe2Ti3O18, Bi6FeCoTi3O18, and

LaBi5FeCoTi3O18 Aurivillius-phase oxides. Physical Review B. 2017;95(20).

Luo L, Sun LJ, Long YZ, Wang XX, Li Q, Liang KL, et al. Multiferroic properties

of aurivillius structure Bi4SmFeTi3O15 thin films. Journal of Materials Science-

Materials in Electronics. 2019;30(10):9945-54.

Birenbaum AY, Scaramucci A, Ederer C. Magnetic order in four-layered

Aurivillus phases. Physical Review B. 2017;95(10).

Kurzawski ?, Malarz K. Simple Cubic Random-Site Percolation Thresholds for

Complex Neighbourhoods. Reports on Mathematical Physics. 2012;70(2):163-9.

Chen C, Song K, Bai W, Yang J, Zhang Y, Xiang P, et al. Effect of Nb and more

Fe ions co-doping on the microstructures, magnetic, and piezoelectric properties of

Aurivillius Bi5Ti3FeO15 phases. Journal of Applied Physics. 2016;120(21):214104.

Vlasenko VG, Shuvaeva VA, Levchenkov SI, Zubavichus YV, Zubkov SV.

Structural, electrical and magnetic characterisation of a new Aurivillius phase

Bi5?xThxFe1+xTi3?xO15 (x=1/3). Journal of Alloys and Compounds. 2014;610:184-8.

Chen T, Meng DC, Li Z, Chen JF, Lei ZW, Ge W, et al. Intrinsic multiferroics in

an individual single-crystalline Bi5Fe0.9Co0.1Ti3O15 nanoplate. Nanoscale.


Li Z, Qi WZ, Cao J, Li Y, Viola G, Jia CL, et al. Multiferroic properties of single

phase Bi3NbTiO9 based textured ceramics. Journal of Alloys and Compounds.


Feng ZW, Zhang RJ, Zhao ED, Yan SX, Zhang YC, Kong WJ, et al. Enhanced

multiferroic properties of dense Bi4LaTi3FeO15 ceramics of layered Aurivillius

structure prepared by hot-press sintering. Journal of Materials Science-Materials in

Electronics. 2019;30(4):3959-64.

Li Z, Tao K, Ma J, Gao ZP, Koval V, Jiang CJ, et al.

Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)(0.25)O-12, a single phase room temperature

multiferroic. Journal of Materials Chemistry C. 2018;6(11):2733-40.

Shi Y, Pu YP, Li JW, Shi RK, Wang W, Zhang QW, et al. Structure, dielectric

and multiferroic properties of three-layered aurivillius SrBi3Nb2FeO12 ceramics.

Ceramics International. 2019;45(7):9283-7.

Yin ZX, Sheng YD, Ma GY. Dielectric, multiferroic and magnetodielectric

properties of Co/Fe co-doped Bi4Ti3O12 ceramics. Journal of Materials Science-

Materials in Electronics. 2019;30(11):10483-90.

Yu ZH, Meng X, Zheng ZQ, Lu YX, Chen H, Huang CW, et al. Room

temperature multiferroic properties of rare-earth-substituted Aurivillius phase

Bi5Ti3Fe0.7Co0.3O15 ceramics. Materials Research Bulletin. 2019;115:235-41.

Koval V, Skorvanek I, Viola G, Zhang M, Jia CL, Yan HX. Crystal Chemistry

and Magnetic Properties of Gd-Substituted Aurivillius-Type Bi5FeTi3O15 Ceramics.

Journal of Physical Chemistry C. 2018;122(27):15733-43.

Meng DC, Tao S, Huang HL, Wang JL, Yun Y, Peng RR, et al. Discerning

lattice and electronic structures in under- and over-doped multiferroic Aurivillius films.

Journal of Applied Physics. 2017;121(11).

Wang TT, Deng HM, Zhou WL, Si SF, Guo BL, Zheng XP, et al. Enhanced

ferromagnetism in Ni doped Aurivillius compound Bi6Fe2Ti3O18 thin films prepared by

chemical solution deposition. Materials Letters. 2018;220:261-5.

Wang G, Huang Y, Sun S, Wang J, Peng R, Lu Y, et al. Layer Effects on the

Magnetic Behaviors of Aurivillius Compounds Bin+1Fen?3Ti3O3n+1(n= 6, 7, 8, 9).

Journal of the American Ceramic Society. 2016;99(4):1318-23.

Song DP, Yang J, Wang YX, Yang J, Zhu XB. Magnetic and ferroelectric

properties of Aurivillius phase Bi7Fe3Ti3O21 and their doped films. Ceramics

International. 2017;43(18):17148-52.

Zuo XZ, Zhang ML, He EJ, Zhang P, Yang J, Zhu XB, et al. Magnetic,

dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic.

Ceramics International. 2018;44(5):5319-26.

Cao X, Liu ZQ, Dedon LR, Bell AJ, Esat F, Wang YJ, et al. Epitaxial

Bi9Ti3Fe5O27 thin films: a new type of layer-structure room-temperature multiferroic.

Journal of Materials Chemistry C. 2017;5(31):7720-5.

Keeney L, Groh C, Kulkarni S, Roy S, Pemble ME, Whatmore RW. Room

temperature electromechanical and magnetic investigations of ferroelectric Aurivillius

phase Bi5Ti3(FexMn1?x)O15 (x = 1 and 0.7) chemical solution deposited thin films.

Journal of Applied Physics. 2012;112(2):024101.

Faraz A, Maity T, Schmidt M, Deepak N, Roy S, Pemble ME, et al. Direct

visualization of magnetic-field-induced magnetoelectric switching in multiferroic

aurivillius phase thin films. Journal of the American Ceramic Society. 2017;100(3):975-

Goodenough JB. Theory of the role of covalence in the perovskite-type

manganites [La, M (II)] Mn O 3. Physical Review. 1955;100(2):564.

Goodenough JB. Jahn-Teller phenomena in solids. Annual review of materials

science. 1998;28(1):1-27.

Yu WJ, Kim YI, Ha DH, Lee JH, Park YK, Seong S, et al. A new manganese

oxide with the Aurivillius structure: Bi2Sr2Nb2MnO12? ?. Solid state communications.


Montero-Cabrera ME, García-Guaderrama M, Mehta A, Webb S, Fuentes-

Montero L, Duarte Moller JA, et al. EXAFS determination of cation local order in

layered perovskites. Revista mexicana de física. 2008;54:42-5.

Giddings AT, Stennett MC, Reid DP, McCabe EE, Greaves C, Hyatt NC.

Synthesis, structure and characterisation of the n= 4 Aurivillius phase Bi5Ti3CrO15.

Journal of Solid State Chemistry. 2011;184(2):252-63.

García-Guaderrama M, Fuentes-Montero L, Rodriguez A, Fuentes L.

Structural characterization of Bi6Ti3Fe2O18 obtained by molten salt synthesis.

Integrated ferroelectrics. 2006;83(1):41-7.

Huang Y, Wang G, Sun S, Wang J, Peng R, Lin Y, et al. Observation of

exchange anisotropy in single-phase layer-structured oxides with long periods.

Scientific reports. 2015;5:15261.

Keeney L, Downing C, Schmidt M, Pemble ME, Nicolosi V, Whatmore RW.

Direct atomic scale determination of magnetic ion partition in a room temperature

multiferroic material. Sci Rep. 2017;7(1):1737.

Kikuchi T. Stability of layered bismuth compounds in relation to the structural

mismatch. Materials Research Bulletin. 1979;14(12):1561-9.

Shannon R. Revised effective ionic radii and systematic studies of interatomic

distances in halides and chalcogenides. Acta Crystallographica Section A.


Birenbaum-Haligua AYL, Steurer W, Spaldin NA. Can the Aurivillius Phases be

Multiferroic? : a First Principles Based Study 2015.

Zurbuchen MA, Jia Y, Knapp S, Carim AH, Schlom DG, Zou L-N, et al.

Suppression of superconductivity by crystallographic defects in epitaxial Sr 2 RuO 4

films. Applied Physics Letters. 2001;78(16):2351-3.

Deepak N, Zhang PF, Keeney L, Pemble ME, Whatmore RW. Atomic vapor

deposition of bismuth titanate thin films. Journal of Applied Physics.


Xie X, Sun H, Xu Z, Wang M, Chen X, Han J. Aurivillius Bi 7 Fe 3? x Ni x Ti 3

O 21 nanostructures as recyclable photocatalysts. New Journal of Chemistry.


Wouters DJ, Maes D, Goux L, Lisoni JG, Paraschiv V, Johnson JA, et al.

Integration of Sr Bi 2 Ta 2 O 9 thin films for high density ferroelectric random access

memory. Journal of applied physics. 2006;100(5):051603.

Fujii E, Uchiyama K. First 0.18 ?m SBT-Based Embedded FeRAM Technology

with Hydrogen Damage Free Stacked Cell Structure. Integrated Ferroelectrics.


Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, et al. Learning through

ferroelectric domain dynamics in solid-state synapses. Nature communications.


Pantel D, Goetze S, Hesse D, Alexe M. Reversible electrical switching of spin

polarization in multiferroic tunnel junctions. Nature materials. 2012;11(4):289-93.

Zahedinejad M, Mazraati H, Fulara H, Yue J, Jiang S, Awad AA, et al. CMOS

compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability.

Applied Physics Letters. 2018;112(13):132404.

Jiang L, Choi WS, Jeen H, Dong S, Kim Y, Han M-G, et al. Tunneling

electroresistance induced by interfacial phase transitions in ultrathin oxide

heterostructures. Nano letters. 2013;13(12):5837-43.

Shen X-W, Fang Y-W, Tian B-B, Duan C-G. Two-dimensional ferroelectric

tunnel junction: the case of monolayer In: SnSe/SnSe/Sb: SnSe homostructure. ACS

Applied Electronic Materials. 2019;1(7):1133-40.

Shen H, Liu J, Chang K, Fu L. In-Plane Ferroelectric Tunnel Junction. Physical

Review Applied. 2019;11(2):024048.

Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, et al. Discovery of robust in-

plane ferroelectricity in atomic-thick SnTe. Science. 2016;353(6296):274-8.

Liu J, Chang K, Ji S-H, Chen X, Fu L. Apparatus and methods for memory

using in-plane polarization. Google Patents; 2018.




How to Cite

Halpin, J., & Keeney, L. . (2021). Naturally Layered Aurivillius Phases: Flexible Scaffolds for the Design of Multiferroic Materials. OAJ Materials and Devices, 5(1). Retrieved from