Chap. 22 - Framework structure materials in photovoltaics based on perovskites 3D

Authors

  • El Hadji Mamadou Keita authors
  • Babacar Mbow Cheikh Anta Diop University, Dakar, Senegal
  • Cheikh Sene Cheikh Anta Diop University, Dakar, Senegal

Keywords:

SOLAR CELLS, PEROVSKITES 3D, PHOTOVOLTAICS, perovskite solar cell, PSC

Abstract

The inorganic and hybrid organic / inorganic perovskites based on lead halide and derived materials (alloys) having the formula ABX3 are emerging as a new and innovative family of absorber materials for the conversion of solar energy into electricity in photovoltaic systems. Thanks to their composition, perovskites and derivatives have exceptional optical, electrical and structural properties with high absorption of light in the visible solar spectrum and good mobility of charge carriers generated by photons facilitating the extraction of electric current. Due to these important properties, perovskite solar cells combine a high efficiency of conversion of light into electricity with great ease of preparation and synthesis at very low costs via simple deposition techniques. In this article we review the structural and optoelectronic properties of perovskites 3D exhibiting photovoltaic properties, we are also interested in the operating principle of perovskite-based solar cells, charge transport materials and associated architectures. Simple fabrication techniques and issues with stability and hysteresis are also discussed.

Author Biographies

Babacar Mbow, Cheikh Anta Diop University, Dakar, Senegal

Professor, Faculty of Science and Technology, Department of Physics, Cheikh Anta Diop University, Dakar, Senegal

Cheikh Sene, Cheikh Anta Diop University, Dakar, Senegal

Professor, Faculty of Science and Technology, Department of Physics, Cheikh Anta Diop University, Dakar, Senegal

References

Muhammad Iqbal,’’ An Introduction to Solar Radiation’’, Academic Press, Toronto, 1983

Alain Ricaud, ‘’Photopiles Solaires’’, de la physique de la conversion photovoltaique aux filieres, materiaux et procedes. 1997, 1e edition, Presses polytechniques et universitaires romandes, p.40.

Fujiwara H., Collins R. (eds) Spectroscopic Ellipsometry for Photovoltaics. Springer Series in Optical Sciences, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-95138-6_1

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p?n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961.

Wiki pages, ‘’Shockley–Queisser limit’’,

https://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser_limit

Solar Edition pages,’’ Shockley-Queisser limit, theoretical maximum solar cell efficiency’’, https://solaredition.com/shockley-queisser-limit-theoretical-maximum-solar-cell-efficiency/

Photovoltaics Report, Fraunhofer Institute for Solar Energy Systems, ISE, September, 2020,

https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

ChristianKN.Møller. The structure of perovskite-like caesium plumbo trihalides. Mat.Fys.Medd. Dan.Vid.Sels.,32,No2(2),1959

Dieter Weber. CH3NH3SnBrxI3-x (x= 0-3), ein sn (ii)-system mit kubischer

Perowskitstruktur / CH3NH3SnBrxI3-x (x= 0-3), a sn (ii)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 33(8):862–865, 1978.

Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131(17):6050–6051, 2009. doi: 10.1021/ja809598r. URL http://dx.doi.org/10.1021/ja809598r

Mathilde Bouchard, Doctoral Thesis, ‘’Pérovskites halogénées AMX3 : synthèse, substitution cationique et étude structurale’’ ’UNIVERSITÉ GRENOBLE ALPES (2018), https://tel.archives-ouvertes.fr/tel-01803325/file/BOUCHARD_2018_diffusion.pdf

Li, C.; Soh, K. C. K.; Wu, P. Formability of ABO3 perovskites. J. Alloy Compd. 2004, 372, 40–48.

Pauling, L. Tha principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026.

Aram Farawar, Literatur Thesis, ‘’ Perovskite Solar Cells: Stability, design architecture, photophysical properties, and morphology of the ?lm in organometal halide Perovskite-based Photovoltaics’’, UNIVERSITY OF AMSTERDAM (2015), https://www.researchgate.net/publication/332616710_Perovskite_Thin_Film_Materials_Stabilized_and_Enhanced_by_ZincII_Doping

Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477– 485

Xueqing Chang, PHD Thesis, ‘’Preparation and characterization of layered two-dimensional germanium halide perovskite’’, Università degli Studi di Cagliari (2019), https://people.unica.it/michelesaba/files/2019/04/%E8%AE%BA%E6%96%87final_BP-1_1554.pdf

Young-Kwang Jung, Ji-Hwan Lee, Aron Walsh, and Aloysius Soon, Influence of Rb/Cs cation-exchange on inorganic Sn halide perovskites: From chemical structure to physical properties, Chemistry of Materials 29(7), 2017

W.J. Yin, J.H. Yang, J. Kang, Y . Yan, S.H. Wei. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A. 2015,3, 8926-8942.

H. D. Kim, H. Ohkita, H. Benten and S. Ito. Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater., 2015, 28, 917–922.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016, 354, 206–209.

Calabrese,J.; Jones,N.L.; Harlow,R.L.; Herron,N.; Thorn,D.L.; Wang, Y.Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330

Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M. Conducting layered organicinorganichalidescontaining<110>-orientedperovskitesheets. Science 1995, 267,1473–1476.

Kim, H. G.; Becker, O. S. .; Jang, J. S.; Ji, S. M.; Borse, P. H.; Lee, J. S. A generic method of visible light sensitization for perovskite-related layered oxides : substitution effect of lead. J. Solid State CHem. 2006, 179, 1214–1218.

C.C. Stoumpos, M.G. Kanatzidis. The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts of chemical research, 2015, 48(10): 2791-2802

Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 2008, 64, 702–707.

Erin Service, Thesis, ‘’Influence of Metal Halide Perovskite Modifications on Structure and Functionality’’, Victoria University of Wellington (2017), https://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/6469/thesis_access.pdf?sequence=1

D. Weber, “CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure”, Zeitschrift fu¨r Naturforschung B 33, 1443–1445 (1978).

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorganic Chemistry 52, 9019–9038 (2013).

. G. Kieslich, S. Sun, and A. K. Cheetham, “Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog”, Chem. Sci. 5, 4712–4715 (2014).

J. Im, J. Chung, S. Kim, N. Park, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , Nanoscale Res. Lett. 2012, 7, 1-7.

. Hiba Diab, Doctoral Thesis, ‘’Propriétés optiques de pérovskites hybrides 3D pour le photovoltaïque’’, Université Paris-Saclay (2017), https://tel.archives-ouvertes.fr/tel-01708869/document

Mlle Khaoula Jemli, Doctoral Thesis, ‘’ Synthése et auto-assemblage des molécules de pérovskites pour la photonique et le marquage’’, Université Paris-Saclay (2016), https://tel.archives-ouvertes.fr/tel-01291443/document

Michael Saliba, Taisuke Matsui, Konrad Domanski, Ji-Youn Seo, Amita Ummadisingu, Shaik M. Zakeeruddin, Juan-Pablo Correa-Baena, Wolfgang R. Tress, Antonio Abate, Anders Hagfeldt, and Michael Grätzel. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, September 2016.

Ferdinand Lédée, Doctoral Thesis, ‘’ Cristallisation et fonctionnalisation de pérovskites hybrides halogénées à 2-dimensions pour le photovoltaïque et l’émission de lumière’’, Université Paris-Saclay (2018), https://tel.archives-ouvertes.fr/tel-01960754/document

Zhen Li, Mengjin Yang, Ji-Sang Park, Su-Huai Wei, Joseph J Berry, and Kai Zhu. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1):284–292, 2015

Tze Chien Sum Guichauan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Graetzel, Subodh Mhaisalkar. Title : LongRange Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342 :344, 2013.

Michael M. Lee, Jo¨el Teuscher, Tsutomu Miyasaka, Takurou N. Murakami, and Henry J. Snaith. E?cient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107) :643–647, 2012.

Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, and Mercouri G. Kanatzidis. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 8(6) :489–494, 2014.

L. Pedesseau, J. J. Alain, E. Deleporte, C. Katan, and J. Even. Electronic properties of 2D and 3D hybrid organic / inorganic perovskites for optoelectronic and photovoltaic applications. Opt. Quant. Electron. 46(10), 1225-1232 (2014).

F. Brivio, A.B. Walker and A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Appl. Phys. Lett. Mat. 1, 042111-1-042111-5 (2013).

E. Mosconi, A. Amat, Md. K. Nazeeruddin, M. Grätzel and F. De Angelis. Firstprinciplesmodeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902-13913 (2013).

P. Umari, E. Mosconi, and F. De Angelis. Relativistic GW Calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports 4, 4467 (2014).

Wan-Jian Yin, Tingting Shi, and Yanfa Yan. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 26(27) :4653–4658, 2014.

A.R.B.M. Yusoff, M.K. Nazeeruddin, Organohalide lead perovskites forphotovoltaic applications, J. Phys. Chem. Lett. 7 (2016) 851–866, http://dx.doi.org/10.1021/acs.jpclett.5b02893.

F Meillaud, A. Shah, C Droz, E Vallat-Sauvain, and C Miazza. E?ciency limits for single junction and tandem solar cells. Solar Energy Materials and Solar Cells, 90(18-19) :2952–2959, 2006.

Feng Hao, Constantinos C. Stoumpos, Robert P H Chang, and Mercouri G. Kanatzidis. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 136(22) :8094–8099, 2014.

Teck Ming Koh, Kunwu Fu, Yanan Fang, Shi Chen, T. C. Sum, Nripan Mathews, Subodh G. Mhaisalkar, Pablo P. Boix, and Tom Baikie. Formamidinium-Containing Metal-Halide : An Alternative Material for NearIR Absorption Perovskite Solar Cells. The Journal of Physical Chemistry C, 118(8) :140117105541008, 2013.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295-298 (2014).

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma and S. Hayase. MASnxPb1-xI3 Perovskites solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5,1004-1011(2014).

Edoardo Mosconi, Anna Amat, Md. K. Nazeeruddin, Michael Gra¨tzel, and Filippo De Angelis. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117(27) :13902–13913, jul 2013.

Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou, Michael B. Johnston, Laura M. Herz, and Henry J. Snaith. Supplementary information Formamidinium of Formamidinium lead trihalide : a broadly tunable perovskite for e?cient planar heterojunction solar cells. Energy & Environmental Science, 7(3) :982, 2014.

N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier and M. Grätzel, Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar- Light Harvesting. Angew. Chem. Int. Ed. 53, 3151-3157 (2014).

Yu, Y.; Wang, C.; Grice, C.R.; Shrestha, N.; Chen, J.; Zhao, D.; Liao, W.; Cimaroli, A.J.; Roland, P.J.; Ellingson, R.J.; et al. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem 2016, 9, 3288–3297.

Nakita K Noel, Samuel D Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala, Giles E Eperon, Sandeep K Pathak, Michael B Johnston, Annamaria Petrozza, Laura M Herz, and Henry J Snaith. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 7(9) :3061–3068, 2014.

Zhang, M.; Yun, J.S.; Ma, Q.; Zheng, J.; Lau, C.F.J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M.A.; et al. High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by GasQuenching. ACS Energy Lett. 2017, 2, 438–444.

Weiqiang Liao, Dewei Zhao, Yue Yu, Niraj Shrestha, Kiran Ghimire, Corey R Grice, Changlei Wang, Yuqing Xiao, Alexander J Cimaroli, Randy J Ellingson, Nikolas J Podraza, Kai Zhu, Ren-Gen Xiong, and Yanfa Yan. Fabrication of Ef?cient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 138 :12360–12363, 2016.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295-298 (2014).

Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, and Tze Chien Sum. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342(6156):344–347, 2013.

Samuel D Stranks, Giles E Eperon, Giulia Grancini, Christopher Menelaou, Marcelo JP Alcocer, Tomas Leijtens, Laura M Herz, Annamaria Petrozza, and Henry J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342 (6156):341–344, 2013

Carlito S Ponseca Jr, Tom J Savenije, Mohamed Abdellah, Kaibo Zheng, Arkady Yartsev, Tobjörn Pascher, Tobias Harlang, Pavel Chabera, Tonu Pullerits, Andrey Stepanov, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 136(14):5189–5192, 2014.

Tianyi Wang, Benjamin Daiber, Jarvist M Frost, Sander A Mann, Erik C Garnett, Aron Walsh, and Bruno Ehrler. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy & Environmental Science, 10(2):509–515, 2017.

Eline M Hutter, María C Gélvez-Rueda, Anna Osherov, Vladimir Bulovi?, Ferdinand C Grozema, Samuel D Stranks, and Tom J Savenije. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nature materials, 16(1):115–120, 2017.

Shuigen Li, Chen Zhang, Jiao-Jiao Song, Xiaohu Xie, Jian-Qiao Meng and Shunjian Xu, Metal Halide Perovskite Single Crystals: From Growth Process to Application, Crystals 8(5):220, 2018

Rui Wang, Muhammad Mujahid, Yu Duan, Zhao-Kui Wang, Jingjing Xue, and Yang Yang, A Review of Perovskites Solar Cell Stability, Advanced Functional Materials, https://doi.org/10.1002/adfm.201808843

Unni Krishnan, Manjot Kaur, Manjeet Kumar, Akshay Kumar, “Factors affecting the

stability of perovskite solar cells: a comprehensive review,” J. Photon. Energy 9(2), 021001 (2019), doi: 10.1117/1.JPE.9.021001.

Istiak Hussain, Hoang Phong Tran, Jared Jaksik, Justin Moore, Nazmul Islam & M. Jasim Uddin, Functional materials, device architecture, and flexibility of perovskite solar cell, Emergent Materials volume 1, pages133–154(2018).

M. Bianka D. Puscher, ‘’Charge Carrier Diffusion and Transfer Mechanism in Hybrid Lead Halide Perovskite Materials’’ https://www.researchgate.net/publication/338594328_Charge_Carrier_Diffusion_and_Transfer_Mechanism_in_Hybrid_Lead_Halide_Perovskite_Materials

Abd Rashid Bin Mohd Yusoff, Peng Gao, Mohammad Khaja Nazeeruddin, Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications, Coordination Chemistry Reviews 373 (2018) 258–294

L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, H. Chen, Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer,J. Mater. Chem. C 2 (2014) 9087–9090.

J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehirac, T. Miyasaka, Low-temperature SnO 2-based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem. A 3 (2015) 10837.

M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun. 49 (2013) 11089.

R. Lindblad, D. Bi, B. W. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. Johansson, H. Rensmo, Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces, J. Phys. Chem. Lett. 2014, 5, 648 - 653.

S. Bao, J. Wu, X. He, Y. Tu, S. Wang, M. Huang, Z. Lan, Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells, Electrochim. Acta 2017, 251, 307.

D.-B. Li, L. Hu, Y. Xie, G. Niu, T. Liu, Y. Zhou, L. Gao, B. Yang, J. Tang, Low-Temperature-Processed Amorphous Bi2S3 Film as an Inorganic Electron Transport Layer for Perovskite Solar Cells, ACS Photonics 2016, 3, 2122 - 2128.

S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, S. I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science 2017, 356, 167 - 171.

Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics energetics, device physics and applications. Adv Mater 2012;24(40):5408–27.

Elumalai NK, Vijila C, Jose R, Uddin A, Ramakrishna S. Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Mater Renew Sustain Energy 2015;4(3):1–25.

Tao C, Ruan S, Xie G, Kong X, Shen L, Meng F, et al. Role of tungsten oxide in inverted polymer solar cells. Appl Phys Lett 2009;94(4). [043311-1-043311-3].

J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun,Y.-H. Seo, S.-S. Kim, S.-I. Na, Highly efficient and stable planar perovskitesolar cells with reduced graphene oxide nanosheets as electrode interlayer,Nano Energy 12 (2015) 96–104, http://dx.doi.org/10.1016/j.nanoen.2014.12.022.

Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun,Efficient planar heterojunction perovskite solar cells employing grapheneoxide as hole conductor, Nanoscale 6 (2014), http://dx.doi.org/10.1039/C4NR03181D (Epub ahead of print).

Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, Iodide-reduced graphene oxidewith dopant-free spiro-OMeTAD for ambient stable and high-efficiencyperovskite solar cells, J. Mater. Chem. A 0 (2015) 1–9, http://dx.doi.org/10.1039/C5TA02710A.

A.D. Sheikh, A. Bera, A. Haque, R.B. Rakhi, S. Del, H.N. Alshareef, T. Wu,Atmospheric effects on the photovoltaic performance of hybrid perovskitesolar cells, Sol. Energy Mater. Sol. Cells 137 (2015) 6–14, http://dx.doi.org/10.1016/j.solmat.2015.01.023.

W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 248 (2015) 1234–1237.

J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 486–491.

N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897–903.

Yi Zhang, Peng Gao, Emad Oveisi, Yonghui Lee, Quentin Jeangros, Giulia Grancini, Sanghyun Paek, Yaqing Feng, Mohammad Khaja Nazeeruddin, PbI 2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH 3 NH 3 PbI 3 Perovskite Solar Cells, J. Am. Chem. Soc. 138 (2016) 14380–14387.

M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 54), Prog. Photovoltaics 22 (2014) 701–710.

A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K. Jen, H.J. Snaith, High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers, Nano Lett. 13 (2013) 3124–3128.

Shuxia Tao, Ines Schmidt, Geert Brocks, Junke Jiang, Ionut Tranca, Klaus Meerholz& Selina Olthof, Absolute energy level positions in tinand lead-based halide perovskites, Nature Communications 10(1), 2019.

A.D. Sheikh, A. Bera, A. Haque, R.B. Rakhi, S. Del, H.N. Alshareef, T. Wu,Atmospheric effects on the photovoltaic performance of hybrid perovskitesolar cells, Sol. Energy Mater. Sol. Cells 137 (2015) 6–14, http://dx.doi.org/10.1016/j.solmat.2015.01.023.

J.B. You, Z.R. Hong, Y.M. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S.R. Lu,Y.S. Liu, H.P. Zhou, Y.M. Yang, Low-temperature solution-processedperovskite solar cells with high efficiency and flexibility, ACS Nano 8 (2014)1674–1680, http://dx.doi.org/10.1021/Nn406020d.

N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature 517 (2015) 476–480.

J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 486–491.

A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K. Jen, H.J. Snaith, High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers, Nano Lett. 13 (2013) 3124–3128.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, E. Nakamura, Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer, J. Mater. Chem. A 2 (2014) 13827–13830.

Y.S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T.A. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy Environ. Sci. 7 (2014) 1454–1460.

Tan Za, Li L, Cui C, Ding Y, Xu Q, Li S, et al. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C 2012;116(35):18626–32.

Patrick Tonui, Saheed O. Oseni, Gaurav Sharma, Qingfenq Yan, Genene Tessema Mola, Perovskites photovoltaic solar cells: An overview of current status, Renewable and Sustainable Energy Reviews 91 (2018) 1025–1044

H. Zhang, Y. Shi, F. Yan, L. Wang, K. Wang, Y. Xing, Q. Dong, T. Ma, A dualfunctional additive for the HTM layer in perovskite solar cells, Chem.Commun. (Camb.) 50 (2014) 5020–5022, http://dx.doi.org/10.1039/c3cc49458f.

Muhazri Abd Mutalib, Farhana Aziz, Ahmad Fauzi Ismail, Wan Norharyati Wan Salleh, Norhaniza Yusof, Juhana Jaafar, Tetsuo Soga, Mohd Zainizan Sahdan, Norasikin Ahmad Ludin, Towards high performance perovskite solar cells: A review of morphologicalcontrol and HTM development, Applied Materials Today 13 (2018) 69–82

Chu-Chen Chueh, Chang-Zhi Li and Alex K.-Y. Jen, Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy Environ. Sci., 2015,8, 1160-1189

Alexandre Gheno,Sylvain Vedraine, Bernard Ratier and Johann Bouclé, ?-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells, Metals 2016, 6(1), 21; https://doi.org/10.3390/met6010021

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.S. Duan, Z, Hong, J. You, Y. Liu, Y. Yang. Interface engineering of highly efficient perovskite solar cells. Science. 2014, 345-54.

Xinxing Liang, PHD Thesis, ‘’Synthesis of Perovskite Nanocrystals and Their Applications in Perovskite Solar Cells’’, University of Bath (2018), https://researchportal.bath.ac.uk/en/studentTheses/synthesis-of-perovskite-nanocrystals-and-their-applications-in-pe

Burschka,J.;Pellet,N.;Moon,S.-J.;Humphry Baker, R.; Gao,P.; Nazeeruddin,M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

Bing Cai, Yedi Xing, Zhou Yang, Wen-Hua Zhang, and Jieshan Qiu. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science, 6(5) :1480, 2013.

Qi Wang, Yuchuan Shao, Qingfeng Dong, Zhengguo Xiao, Yongbo Yuan, and Jinsong Huang. Large ?ll-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci., 7(7) :2359–2365, 2014.

Dongqin Bi, Soo-Jin Moon, Leif H¨aggman, Gerrit Boschloo, Lei Yang, Erik M. J. Johansson, Mohammad K. Nazeeruddin, Michael Gr¨atzel, and Anders Hagfeldt. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin ?lm solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 3(41) :18762, 2013.

David B. Mitzi*. Thin-Film Deposition of OrganicInorganic Hybrid Materials. Chemistry of Materials, 13(10) :3283–3298, 2001.

Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan, Letian Dou, Yongsheng Liu, and Yang Yang. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 14(7) :4158–4163, 2014.

Chao Ying, Chengwu Shi, Ni Wu, Jincheng Zhang, and Mao Wang. A two-layer structured PbI2 thin ?lm for e?cient planar perovskite solar cells. Nanoscale, 7(28) :12092–12095, 2015.

Fuguo Zhang, Xichuan Yang, Haoxin Wang, Ming Cheng, Jianghua Zhao, and Licheng Sun. Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Interfaces, 6(18) :16140–16146, 2014.

Liu, M.; Johnston, M. B.; Snaith, H. J. Ef?cient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-s.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2014, 136, 622–625.

Mingzhen Liu, Michael B. Johnston, and Henry J. Snaith. E?cient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467) :395– 398, sep 2013.

Beom-Soo Kim, Tae-Min Kim, Min-Soo Choi, Hyun-Sub Shim, and Jang-Joo Kim. Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Organic Electronics, 17 :102– 106, 2015.

Matthew R Leyden, Luis K Ono, Sonia R Raga, Yuichi Kato, Shenghao Wang, and Yabing Qi. High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A, 2(44) :18742–18745, 2014.

Paifeng Luo, Zhaofan Liu, Wei Xia, Chenchen Yuan, Jigui Cheng, Chenxi Xu, and Yingwei Lu. Chlorine-conducted defect repairment and seed crystalmediated vapor growth process for controllable preparation of e?cient and stable perovskite solar cells. J. Mater. Chem. A, 3(45) :22949–22959, 2015.

J.H. Im, H.S. Kim, N.G. Park. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials. 2014, 2: 081510.

T. Jesper Jacobsson, Wolfgang Tress, Juan-Pablo Correa-Baena, Tomas Edvinsson, and Anders Hagfeldt. Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells : The Importance of Temperature on Device Performance. The Journal of Physical Chemistry C, 120 :acs.jpcc.6b02858, may 2016.

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith. E?cient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107):643–647, 2012.

J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang. Low-temperature solution-processed perovskite solar cells with high e?ciency and ?exibility. ACS Nano, 8(2):1674–1680, 2014.

M.Z. Liu, M.B. Johnston, H.J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395-398.

Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. High-ef?ciency solution-processedperovskitesolarcellswithmillimeter-scalegrains. Science 2015, 347,522– 525.

P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, and A.K. Jen. Additive enhanced crystallization of solution-processed perovskite for highly e?cient planar-heterojunction solar cells. Advanced Materials, 26(22):3748–3754, 2014.

N.J.Jeon,J.H.Noh,Y.C.Kim,W.S.Yang,S.Ryu,andS.I.Seok. Solventengineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 13(9):897–903, 2014.

Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. A Fast Deposition-Crystallization Procedure for Highly Ef?cient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie 2014, 126, 10056–10061.

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014, 13, 897–903.

S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu Trang, N.G. Park, M. Gr¨atzel, S. Mhaisalkar, N. Mathews, and P.P. Boix. High e?ciency electrospun TiO2 nano?ber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 6(3):1675–1679, 2014.

L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y.-B. Cheng, and J. Tang. Sequential deposition of CH3NH3PbI3 on planar NiO ?lm for e?cient planar perovskite solar cells. ACS Photonics, 1(7):547– 553, 2014.

J. J. Zhao, P. Wang, Z. H. Liu, L.Y. Wei, Z. Yang, H. R. Chen, X. Q. Fang, X. L. Liua, Y. H. Mai. Controlled reaction for improved CH 3 NH 3 PbI 3 transition in perovskite solar cells. Dalton Trans. 2015,44, 17841-17849.

David Grosso. How to exploit the full potential of the dip-coating process to better control ?lm formation. Journal of Materials Chemistry, 21(43) :17033, 2011.

Yongguang Tu, Jihuai Wu, Xin He, Panfeng Guo, Tongyue Wu, Hui Luo, Quanzhen Liu, Kai Wang, Jianming Lin, Miaoliang Huang, Yunfang Huang, Zhang Lan, and Sizhong Li. Solvent engineering for forming stonehenge-like pbi2 nano-structures towards e?cient perovskite solar cells. J. Mater. Chem. A, 5(9) :4376–4383, 2017.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2):622–625, 2014.

Yabing Qi Luis K. Ono, Matthew R. Leyden, Shenghao Wang. Organometal halide perovskite thin ?lms and solar cells by vapor deposition. Journal of Materials Chemistry A : Materials for energy and sustainability, 4 :6693–6713, 2016.

Jeong-hyeok Im, Hui-seon Kim, and Nam-gyu Park. Morphology-photovoltaic property correlation in perovskite solar cells : One-step versus two-step deposition of CH3NH3PbI3. APL Materials, 2, 2015.

Priyanka Kajal, Kunal Ghosh and Satvasheel Powar, Manufacturing Techniques of PerovskiteSolar Cells, In book: Applications of Solar Energy (pp.341-364), 2018

M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L.F. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O.F. Mohammed, O.M. Bakr. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6: 7586.

Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9):897–903, 2014.

Arthur Marronnier, Doctoral Thesis, ‘’Anharmonicity and Instabilities in Halide Perovskites for Last Generation Solar Cells’’, University Paris-Saclay (2018), https://pastel.archives-ouvertes.fr/tel-01941725/document

E.L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumller, M.G. Christoforo, and M.D. McGehee. Hysteresis and transient behavior in currentvoltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7(11):3690–3698, 2014.

C. Zhao, B. Chen, X. Qiao, L. Luan, K. Lu, and B. Hu. Revealing underlying processes involved in light soaking e?ects and hysteresis phenomena in perovskite solar cells. Advanced Energy Materials, 5(14):1500279, 2015.

L.K. Ono, S.R. Raga, S. Wang, Y. Kato, and Y. Qi. Temperature-dependent hysteresis e?ects in perovskite-based solar cells. Journal of Materials Chemistry A, 3(17):9074–9080, 2015.

H.-S. Kim and N.-G. Park. Parameters a?ecting IV hysteresis of CH3NH3PbI3 perovskite solar cells: E?ects of perovskite crystalsize and mesoporousTiO2 layer. The Journal of Physical Chemistry Letters, 5(17):2927–2934, 2014.

G.A. Sepalage, S. Meyer, A. Pascoe, A.D. Scully, F. Huang, U. Bach, Y.-B. Cheng, and L. Spiccia. Copper(i) iodide as hole-conductor in planar perovskite solar cells: Probing the origin of J-V hysteresis. Advanced Functional Materials, 25(35):5650–5661, 2015.

L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W.C.Y.- B. Chen, J. Tang, Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells, ACS Photonics 1 (2014) 547–553.

X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition, J. Mater. Chem. A 3 (2015) 5360 – 5367.

Y. Zhao, K. Zhu, Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia Chem. Commun. 50 (2014) 1605–1607.

M. Herman, M. Jankovec, M. Topic, Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level, Int. J. Photoenergy 2012 (2012) 151452.

J.A.Christians,J.S.Manser,andP.V.Kamat. Bestpracticesinperovskitesolarcell e?ciency measurements. Avoiding the error of making bad cells look good. The Journal of Physical Chemistry Letters, 6(5):852–857, 2015.

H.J.Snaith,A.Abate,J.M.Ball,G.E.Eperon,T.Leijtens,N.K.Noel,S.D.Stranks, J.T.-W. Wang, K. Wojciechowski, and W. Zhang. Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters, 5(9):1511–1515, 2014.

H.-W.Chen, N. Sakai, M. Ikegami, andT.Miyasaka. Emergence ofhysteresisand transient ferroelectric response in organo-lead halide perovskite solar cells. The Journal of Physical Chemistry Letters, 6(1):164–169, 2015.

J.Wei,Y.Zhao,H.Li,G.Li,J.Pan,D.Xu,Q.Zhao,andD.Yu. Hysteresisanalysis based on the ferroelectric e?ect in hybrid perovskite solar cells. The Journal of Physical Chemistry Letters, 5(21):3937–3945, 2014.

C.Eames,J.M.Frost,P.R.Barnes,B.C.O’Regan,A.Walsh,andM.S.Islam. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6(1):7497, 2015.

C. Li, S. Tscheuschner, F. Paulus, P.E. Hopkinson, J. Kie?ling, A. Khler, Y. Vaynzof, and S. Huettner. Iodine migration and its e?ect on hysteresis in perovskite solar cells. Advanced Materials, 28(12):2446–2454, 2016.

Frost J M, Butler K T, Brivio F, Hendon C H, Van Schilfgaarde M and Walsh A 2014 Atomistic origins of high-performanc1. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–90 (2014).e in hybrid halide perovskite solar cells. Nano. Lett. 14, 2584-2590

Wu X, Yu H, Li L, Wang F, Xu H and Zhao N 2015 Composition-Dependent Light-Induced Dipole Moment Change in Organometal Halide Perovskites J. Phys. Chem. C 119, 1253-1259

Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kießling J, Köhler A, Vaynzof Y and Huettner S 2016 Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells Adv. Mater. 28, 2446-2454

Hysteresis in Perovskite Solar Cells, http://repositori.uji.es/xmlui/bitstream/handle/10234/170814/castillejo.pdf;jsessionid=5CEC8D337FF07733CBEF50561799EE1C?sequence=1

Chen H-W, Sakai N, Ikegami M and Miyasaka T 2015 Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells J Phys. Chem. Lett. 6, 164-169.

Leguy A M A et al. 2015 The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells Nat. Commun. 6, 7124.

Meloni S et al. 2016 Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells Nat. Commun. 7, 10334.

Chen B, Shi J, Zheng X, Zhou Y, Zhu K and Priya S 2015 Ferroelectric solar cells based on inorganic-organic hybrid perovskites J. Mater. Chem. A 3, 7699-7705.

Delugas P, Caddeo C, Filippetti A and Mattoni A 2016 Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine J Phys. Chem. Lett. 7, 2356-2361.

Shao Y, Xiao Z, Bi C, Yuan Y and Huang J 2014 Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells Nat.

] Bergmann V W, Guo Y, Tanaka H, Hermes I M, Li D, Klasen A, Bretschneider S A, Nakamura E, Berger R and Weber S A L 2016 Local Time-Dependent Charging in a Perovskite Solar Cell ACS Appl. Mater. Inerfaces 8, 19402-19409

] Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S and Berger R 2014 Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell Nat. Commun. 5, 5001.

Motti S G, Gandini M, Barker A J, Ball J M, Srimath Kandada A R and Petrozza A 2016 Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors ACS Energy Lett. 1, 726-730.

Leijtens T, Eperon G E, Barker A J, Grancini G, Zhang W, Ball J M, Kandada A R S, Snaith H J and Petrozza A 2016 Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells Energy environ. Sci. 9,

-3481.

Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K and Gratzel M 2015 Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field Energy. Environ. Sci. 8, 995.

Leguy A M A et al. 2015 The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells Nat. Commun. 6, 7124.

Richardson G, O'Kane S E J, Niemann R G, Peltola T A, Foster J M, Cameron P J and Walker A B 2016 Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy environ. Sci. 9, 1476-1485.

Yuan Y and Huang J 2016 Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability Acc. Chem. Res. 49, 286-293.

Frost J M and Walsh A 2016 What Is Moving in Hybrid Halide Perovskite Solar Cells? Acc. Chem. Res. 49, 528-535.

Azpiroz J M, Mosconi E, Bisquert J and De Angelis F 2015 Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation Energy Environ. Sci. 8, 2118.

van Reenen S, Kemerink M and Snaith H J 2015 Modeling Anomalous Hysteresis in Perovskite Solar Cells J Phys. Chem. Lett. 6, 3808-3814.

Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A and Islam M S 2015 Ionic transport in hybrid lead iodide perovskite solar cells Nat. Commun. 6, 7497.

Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A and Ho-Baillie A 2016 Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells Adv. Energy Mater., DOI: 10.1002/aenm.201600330.

J.M. Azpiroz, M. Edoardo, J. Bisquert, F.D. Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation, Energy Environ. Sci. 8 (2015) 2118–2127.

Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A and Huang J 2015 Giant switchable photovoltaic effect in organometal trihalide perovskite devices Nat. Mater. 14, 193-198

Downloads

Published

2022-01-07

How to Cite

Keita, E. H. M., Mbow, B., & Sene, C. (2022). Chap. 22 - Framework structure materials in photovoltaics based on perovskites 3D. OAJ Materials and Devices, 5(2). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/135