Chap. 26 - Resistance Switching Effect in Octahedral framework oxide

Authors

  • Yaovi GAGOU LPMC University Picardie Jules Verne
  • B. Allouche Université de Picardie Jules Verne, LPMC, 33 rue Saint-Leu, F-80039 Amiens, France
  • P. Saint-Gregoire C.A.L., 14 Av Frédéric Mistral, 34110 Frontignan, France
  • M. El Marssi Université de Picardie Jules Verne, LPMC, 33 rue Saint-Leu, F-80039 Amiens, France

Keywords:

perovskites, resistance switching, ReRAM, tetragonal tungsten bronze, GdK2Nb5O15, GKN, memory device, thin film, pulsed laser deposition, PLD

Abstract

Resistive Random-Access Memories (ReRAM) are an alternative way to create
new memory devices. This is physically possible due to the existence in the material, of
two resistive states clearly discreditable, as a function of voltage value and polarity first
parameter under control to pass from one state to another one. However, the mechanism
of the resistance switching is not simple and is under debate. We present in the present
chapter all the factors entering in the switching process in tetragonal tungsten bronze
(TTB) type structure oxide thin films deposited by PLD technique onto MgO or STO
substrates. Results show that GdK2Nb5O15 (GKN) thin films deposited on MgO and STO
substrates are resistively switchable. It was found that the nature of the substrate strongly
affects the resistance ratio: GKN on SRO/LSCO/MgO showed a large hysteresis
compared to GKN on SRO/STO. Substrate effect and oxygen vacancy on resistance
switching in GKN thin film were studied in the same experimental conditions. The study of
resistance switching in the GKN/MgO and GKN/STO thin films has confirmed that for low
voltages, below the threshold value of 1.3 V, the electric transport is dominated by the
formation of a Schottky type barrier, which allows a minimum leakage current. Resistance
switching in GKN is attributed to the oxygen vacancies migration which can be controlled
by the substrate or the frequency sweep.

References

J.F. Scott, C.A. Paz de Araujo, Ferroelectric Memories, Science. 246 (1989) 1400–1405.

https://doi.org/10.1126/science.246.4936.1400.

R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory, Proc. IEEE.

(2003) 489–502. https://doi.org/10.1109/JPROC.2003.811702.

P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, M.P.C.M. Krijn, Ferroelectric Schottky Diode,

Phys. Rev. Lett. 73 (1994) 2107–2110. https://doi.org/10.1103/PhysRevLett.73.2107.

Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, Field-induced resistive switching based on space-

charge-limited current, Appl. Phys. Lett. 90 (2007) 022907.

https://doi.org/10.1063/1.2430912.

M.F. Chisholm, W. Luo, M.P. Oxley, S.T. Pantelides, H.N. Lee, Atomic-Scale

Compensation Phenomena at Polar Interfaces, Phys. Rev. Lett. 105 (2010) 197602.

https://doi.org/10.1103/PhysRevLett.105.197602.

T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable Ferroelectric Diode and

Photovoltaic Effect in BiFeO3, Science. 324 (2009) 63–66.

https://doi.org/10.1126/science.1168636.

A. Sawa, Resistive switching in transition metal oxides, Materials Today. 11 (2008) 28–36.

https://doi.org/10.1016/S1369-7021(08)70119-6.

D.J. Kim, H. Lu, S. Ryu, S. Lee, C.W. Bark, C.B. Eom, A. Gruverman, Retention of

resistance states in ferroelectric tunnel memristors, Appl. Phys. Lett. 103 (2013) 142908.

https://doi.org/10.1063/1.4823989.

J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive

switching mechanism for metal/oxide/metal nanodevices, Nature Nanotech. 3 (2008)

–433. https://doi.org/10.1038/nnano.2008.160.

R. Bruchhaus, R. Muenstermann, T. Menke, C. Hermes, F. Lentz, R. Weng, R. Dittmann,

R. Waser, Bipolar resistive switching in oxides: Mechanisms and scaling, Current Applied

Physics. 11 (2011) e75–e78. https://doi.org/10.1016/j.cap.2010.10.022.

L. Goux, W. Polspoel, J.G. Lisoni, Y.-Y. Chen, L. Pantisano, X.-P. Wang, W. Vandervorst,

M. Jurczak, D.J. Wouters, Bipolar Switching Characteristics and Scalability in NiO Layers

Made by Thermal Oxidation of Ni, J. Electrochem. Soc. 157 (2010) G187.

https://doi.org/10.1149/1.3454199.

M.J. Rozenberg, M.J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, P. Levy,

Mechanism for bipolar resistive switching in transition-metal oxides, Phys. Rev. B. 81

(2010) 115101. https://doi.org/10.1103/PhysRevB.81.115101.

R. Waser, M. Aono, Nanoionics-based resistive switching memories, Nature Mater. 6

(2007) 833–840. https://doi.org/10.1038/nmat2023.

X. Xu, H. Lv, H. Liu, Q. Luo, T. Gong, M. Wang, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long,

M. Liu, Investigation of LRS dependence on the retention of HRS in CBRAM, Nanoscale

Res Lett. 10 (2015) 61. https://doi.org/10.1186/s11671-015-0771-0.

R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-Based Resistive Switching Memories -

Nanoionic Mechanisms, Prospects, and Challenges, Adv. Mater. 21 (2009) 2632–2663.

https://doi.org/10.1002/adma.200900375.

L. Goux, Y.-Y. Chen, L. Pantisano, X.-P. Wang, G. Groeseneken, M. Jurczak, D.J.

Wouters, On the Gradual Unipolar and Bipolar Resistive Switching of TiNHfO[sub 2]Pt

Memory Systems, Electrochem. Solid-State Lett. 13 (2010) G54.

https://doi.org/10.1149/1.3373529.

S.-W. Chen, J.-M. Wu, Unipolar resistive switching behavior of BiFeO3 thin films prepared

by chemical solution deposition, Thin Solid Films. 519 (2010) 499–504.

https://doi.org/10.1016/j.tsf.2010.08.004.

Y. Shuai, S. Zhou, D. Bürger, M. Helm, H. Schmidt, Nonvolatile bipolar resistive switching

in Au/BiFeO 3 /Pt, Journal of Applied Physics. 109 (2011) 124117.

https://doi.org/10.1063/1.3601113.

X. Chen, G. Wu, H. Zhang, N. Qin, T. Wang, F. Wang, W. Shi, D. Bao, Nonvolatile bipolar

resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si

substrates, Appl. Phys. A. 100 (2010) 987–990. https://doi.org/10.1007/s00339-010-5910-

y.

J. Zhang, H. Yang, Q. Zhang, S. Dong, J.K. Luo, Bipolar resistive switching characteristics

of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition,

Appl. Phys. Lett. 102 (2013) 012113. https://doi.org/10.1063/1.4774400.

N.F. Mott, The Basis of the Electron Theory of Metals, with Special Reference to the

Transition Metals, Proc. Phys. Soc. A. 62 (1949) 416–422. https://doi.org/10.1088/0370-

/62/7/303.

D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J.

Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Electrical

observations of filamentary conductions for the resistive memory switching in NiO films,

Appl. Phys. Lett. 88 (2006) 202102. https://doi.org/10.1063/1.2204649.

B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K.

Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin

films grown by atomic-layer deposition, Journal of Applied Physics. 98 (2005) 033715.

https://doi.org/10.1063/1.2001146.

B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K.

Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin

films grown by atomic-layer deposition, Journal of Applied Physics. 98 (2005) 033715.

https://doi.org/10.1063/1.2001146.

K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Bipolar resistive

switching in polycrystalline TiO2 films, Appl. Phys. Lett. 90 (2007) 113501.

https://doi.org/10.1063/1.2712777.

R. Meyer, R. Waser, Hysteretic resistance concepts in ferroelectric thin films, Journal of

Applied Physics. 100 (2006) 051611. https://doi.org/10.1063/1.2337078.

X. Chai, J. Jiang, Q. Zhang, X. Hou, F. Meng, J. Wang, L. Gu, D.W. Zhang, A.Q. Jiang,

Nonvolatile ferroelectric field-effect transistors, Nat Commun. 11 (2020) 2811.

https://doi.org/10.1038/s41467-020-16623-9.

E.Y. Tsymbal, APPLIED PHYSICS: Tunneling Across a Ferroelectric, Science. 313 (2006)

–183. https://doi.org/10.1126/science.1126230.

H. Kohlstedt, N.A. Pertsev, J. Rodríguez Contreras, R. Waser, Theoretical current-voltage

characteristics of ferroelectric tunnel junctions, Phys. Rev. B. 72 (2005) 125341.

https://doi.org/10.1103/PhysRevB.72.125341.

A. Razumnaya, Y. Gagou, H. Bouyanfif, B. Carcan, B. Allouche, J. Wolfman, C. Autret-

Lambert, M.E. Marssi, D. Mezzane, I. Luk’yanchuk, Resistive Switching Hysteresis in Thin

Films of Bismuth Ferrite, Ferroelectrics, 444 (2013) 183–189.

https://doi.org/10.1080/00150193.2013.790759.

G. Liu, K. Jin, J. Qiu, M. He, H. Lu, J. Xing, Y. Zhou, G. Yang, Resistance switching in

BaTiO3???Si p-n heterostructure, Appl. Phys. Lett. 91 (2007) 252110.

https://doi.org/10.1063/1.2821369.

C. Wang, K. Jin, Z. Xu, L. Wang, C. Ge, H. Lu, H. Guo, M. He, G. Yang, Switchable diode

effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett.

(2011) 192901. https://doi.org/10.1063/1.3589814.

A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H.B. Lu, G.Z.

Yang, A Resistive Memory in Semiconducting BiFeO3 Thin-Film Capacitors, Adv. Mater.

(2011) 1277–1281. https://doi.org/10.1002/adma.201004317.

J. Tikkanen, H. Huhtinen, P. Paturi, Oxygen-sintered (Pr,Ca) MnO 3 : Structure and

magnetism at high Ca concentrations, Journal of Alloys and Compounds. 635 (2015) 41–

https://doi.org/10.1016/j.jallcom.2015.02.098.

M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of Oxygen

Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory, Adv. Mater. 19 (2007)

–2235. https://doi.org/10.1002/adma.200602915.

S.X. Wu, L.M. Xu, X.J. Xing, S.M. Chen, Y.B. Yuan, Y.J. Liu, Y.P. Yu, X.Y. Li, S.W. Li,

Reverse-bias-induced bipolar resistance switching in Pt?TiO2?SrTi0.99Nb0.01O3?Pt

devices, Appl. Phys. Lett. 93 (2008) 043502. https://doi.org/10.1063/1.2965469.

B. Allouche, Y. Gagou, F. Le Marrec, M.-A. Fremy, M. El Marssi, Bipolar resistive switching

and substrate effect in GdK 2 Nb 5 O 15 epitaxial thin films with tetragonal tungsten

bronze type structure, Materials & Design. 112 (2016) 80–87.

https://doi.org/10.1016/j.matdes.2016.09.047.

B. Allouche, Y. Gagou, M.-A. Fremy, F. Le Marrec, M. El Marssi, Resistive switching in a

(00l)-oriented GdK2Nb5O15 thin film with tetragonal tungsten bronze type structure,

Superlattices and Microstructures. 72 (2014) 35–42.

https://doi.org/10.1016/j.spmi.2014.04.008.

Q. Xu, X. Yuan, Y. Cao, L. Si, D. Wu, Bipolar resistive switching in BiFe0.95Mn0.05O3

films, Solid State Communications. 152 (2012) 2036–2039.

https://doi.org/10.1016/j.ssc.2012.08.023.

H. Yang, H.M. Luo, H. Wang, I.O. Usov, N.A. Suvorova, M. Jain, D.M. Feldmann, P.C.

Dowden, R.F. DePaula, Q.X. Jia, Rectifying current-voltage characteristics of BiFeO3?Nb-

doped SrTiO3 heterojunction, Appl. Phys. Lett. 92 (2008) 102113.

https://doi.org/10.1063/1.2896302.

D. Lee, S.H. Baek, T.H. Kim, J.-G. Yoon, C.M. Folkman, C.B. Eom, T.W. Noh, Polarity

control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode

and photovoltaic effects, Phys. Rev. B. 84 (2011) 125305.

https://doi.org/10.1103/PhysRevB.84.125305.

J.G. Simmons, Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal

Systems, Phys. Rev. 155 (1967) 657–660. https://doi.org/10.1103/PhysRev.155.657.

J. Frenkel, On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors,

Phys. Rev. 54 (1938) 647–648. https://doi.org/10.1103/PhysRev.54.647.

B. Allouche, Y. Gagou, F. Le Marrec, M.-A. Fremy, M. El Marssi, Oxygen-deficient GdK2Nb5O15 ferroelectric epitaxial thin film, EPL. 116 (2016) 67001.

https://doi.org/10.1209/0295-5075/116/67001.

S. Deswal, A. Jain, H. Borkar, A. Kumar, A. Kumar, Conduction and switching mechanism

in Nb 2 O 5 thin films based resistive switches, EPL. 116 (2016) 17003.

https://doi.org/10.1209/0295-5075/116/17003.

Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao, G. Yang, Evidence

for a Crucial Role Played by Oxygen Vacancies in LaMnO3 Resistive Switching

Memories, Small. 8 (2012) 1279–1284. https://doi.org/10.1002/smll.201101796.

Downloads

Published

2022-01-07

How to Cite

GAGOU, Y., Allouche, B., Saint-Gregoire, P., & El Marssi, M. (2022). Chap. 26 - Resistance Switching Effect in Octahedral framework oxide. OAJ Materials and Devices, 5(2). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/137