Spectrophysics of Coumarin-Based Chromophore

Authors

  • Faisal Rasool
  • Amir Sohail Chemistry department, College of science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.

Keywords:

SPECTROPHYSICS, INTERMOLECULAR CHARGE TRANSFER, NON-RADIATIVE RATE CONSTANT, EXCITED-STATE LIFETIME, LOCAL ENVIRONMENT, COUMARIN DYE

Abstract

In this work, we comprehensively explore the spectral and photophysical properties of a coumarin-based dye (1) in neat solvents. The modulation of stokes shifts, emission quantum yields (?F) and excited-state lifetimes of 1 by local environment (polarity, polarizability, viscosity and hydrogen bonding) signifies the formation of intramolecular charge state (ICT) from the amino group to the coumarin moiety. Collectively, in the more viscous polar solvents the rotation of the amino group is restricted, exponentially decreasing the non-radiative rate constants (knr).

References

E. L. Rachofsky, R. Osman, and J. B. A. Ross, “Probing Structure and Dynamics of DNA with 2-Aminopurine: Effects of Local Environment on Fluorescence †,” Biochemistry, vol. 40, no. 4, pp. 946–956, Jan. 2001, doi: 10.1021/bi001664o.

J.-A. Cheng and C. H. Chen, “White organic electroluminescence from an exciplex based on the novel substituted aluminium quinolate complex,” J. Mater. Chem., vol. 15, no. 11, p. 1179, 2005, doi: 10.1039/b415095c.

F. So, J. Kido, and P. Burrows, “Emitting Devices for Solid-State Lighting,” MRS Bull., vol. 33, p. 7, 2008.

R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, “White organic electroluminescence devices,” Appl. Phys. Lett., vol. 68, no. 9, pp. 1192–1194, Feb. 1996, doi: 10.1063/1.115965.

F. So, J. Kido, and P. Burrows, “Emitting Devices for Solid-State Lighting,” MRS Bull., vol. 33, p. 7, 2008.

S. Kumar et al., “Engineering fused coumarin dyes: a molecular level understanding of aggregation quenching and tuning electroluminescence via alkyl chain substitution,” J. Mater. Chem. C, vol. 2, no. 32, p. 6637, Jul. 2014, doi: 10.1039/C4TC00807C.

D. Thirion, M. Romain, J. Rault-Berthelot, and C. Poriel, “Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design,” J. Mater. Chem., vol. 22, no. 15, p. 7149, 2012, doi: 10.1039/c2jm16774c.

Y. Kubota, H. Hara, S. Tanaka, K. Funabiki, and M. Matsui, “Synthesis and Fluorescence Properties of Novel Pyrazine–Boron Complexes Bearing a ?-Iminoketone Ligand,” Org. Lett., vol. 13, no. 24, pp. 6544–6547, Dec. 2011, doi: 10.1021/ol202819w.

I. Na et al., “Origin of exciplex degradation in organic light emitting diodes: Thermal stress effects over glass transition temperature of emission layer,” Appl. Phys. Lett., vol. 117, no. 6, p. 063303, Aug. 2020, doi: 10.1063/5.0016096.

A. Sohail, M. A. Alnaqbi, and N. Saleh, “Alginate/Cucurbit[7]uril/Dequalinium-Based Supramolecular Carbohydrates: Modulation of FRET Signals by Temperature Control,” Macromolecules, vol. 52, no. 22, pp. 9023–9031, Nov. 2019, doi: 10.1021/acs.macromol.9b01788.

A. Sohail, “Mini review Applications of FRET-based supramolecular architectures for temperature sensing and Cancer diagnosis: A mini-review,” OAJ Mater. Devices, vol. 6, no. 1, Feb. 2022, doi: 10.23647/ca.md20220102.

H. Zhang, H. Chai, T. Yu, Y. Zhao, and D. Fan, “High-Efficiency Blue Electroluminescence Based on Coumarin Derivative 3-(4-(anthracen-10-yl)phenyl)-benzo[5,6]coumarin,” J. Fluoresc., vol. 22, no. 6, pp. 1509–1512, Nov. 2012, doi: 10.1007/s10895-012-1088-3.

M. Mille, J.-F. Lamère, F. Rodrigues, and S. Fery-Forgues, “Spontaneous Formation of Fluorescent Nanofibers from Self-Assembly of Low-Molecular-Weight Coumarin Derivatives in Water,” Langmuir, vol. 24, no. 6, pp. 2671–2679, Mar. 2008, doi: 10.1021/la702197h.

C.-T. Chen et al., “Ortho-Substituent Effect on Fluorescence and Electroluminescence of Arylamino-Substituted Coumarin and Stilbene,” Org. Lett., vol. 5, no. 8, pp. 1261–1264, Apr. 2003, doi: 10.1021/ol034268h.

K.-C. Tang et al., “Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer (ESIPT): White Light Generation in A Single ESIPT System,” J. Am. Chem. Soc., vol. 133, no. 44, pp. 17738–17745, Nov. 2011, doi: 10.1021/ja2062693.

L. G. T. A. Duarte et al., “White-light generation from all-solution-processed OLEDs using a benzothiazole–salophen derivative reactive to the ESIPT process,” Phys. Chem. Chem. Phys., vol. 21, no. 3, pp. 1172–1182, 2019, doi: 10.1039/C8CP06485G.

M. Saleem, M. Rafiq, and M. Hanif, “Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development,” J. Fluoresc., vol. 27, no. 1, pp. 31–58, Jan. 2017, doi: 10.1007/s10895-016-1933-x.

P. Kele, K. Nagy, and A. Kotschy, “The Development of Conformational-Dynamics-Based Sensors,” Angew. Chem., vol. 118, no. 16, pp. 2627–2629, Apr. 2006, doi: 10.1002/ange.200504335.

F. Bu et al., “Unusual Aggregation-Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion,” Angew. Chem. Int. Ed., vol. 54, no. 48, pp. 14492–14497, Nov. 2015, doi: 10.1002/anie.201506782.

L. Le Bras, K. Chaitou, S. Aloïse, C. Adamo, and A. Perrier, “Aggregation-caused quenching versus crystallization induced emission in thiazolo[5,4- b ]thieno[3,2- e ]pyridine (TTP) derivatives: theoretical insights,” Phys. Chem. Chem. Phys., vol. 21, no. 1, pp. 46–56, 2019, doi: 10.1039/C8CP04730H.

Z. Zhao, B. He, and B. Z. Tang, “Aggregation-induced emission of siloles,” Chem. Sci., vol. 6, no. 10, pp. 5347–5365, 2015, doi: 10.1039/C5SC01946J.

L. Yan, R. Li, W. Shen, and Z. Qi, “Multiple–color AIE coumarin–based Schiff bases and potential application in yellow OLEDs,” J. Lumin., vol. 194, pp. 151–155, Feb. 2018, doi: 10.1016/j.jlumin.2017.10.032.

H. Zhang, X. Liu, Y. Gong, T. Yu, and Y. Zhao, “Synthesis and characterization of SFX-based coumarin derivatives for OLEDs,” Dyes Pigments, vol. 185, p. 108969, Feb. 2021, doi: 10.1016/j.dyepig.2020.108969.

Md. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices,” J. Am. Chem. Soc., vol. 125, no. 29, pp. 8790–8797, Jul. 2003, doi: 10.1021/ja021413y.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int., vol. 55, no. 6, pp. 572–582, Jun. 2006, doi: 10.1002/pi.1974.

M. Kr. Paul, Y. D. Singh, A. Dey, S. Kr. Saha, S. Anwar, and Asoke. P. Chattopadhyay, “Coumarin based emissive rod shaped new schiff base mesogens and their zinc(II) complexes: synthesis, photophysical, mesomorphism, gelation and DFT studies,” Liq. Cryst., pp. 1–18, Nov. 2015, doi: 10.1080/02678292.2015.1108467.

J. Buchs, M. Gäbler, D. Janietz, and H. Sawade, “Coumarin-based emissive liquid crystals,” Liq. Cryst., vol. 41, no. 11, pp. 1605–1618, Nov. 2014, doi: 10.1080/02678292.2014.936530.

H. Xiao et al., “Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging,” New J Chem, vol. 38, no. 6, pp. 2386–2393, 2014, doi: 10.1039/C3NJ01557B.

F. Xu, T. T. Testoff, L. Wang, and X. Zhou, “Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells,” Molecules, vol. 25, no. 19, p. 4478, Sep. 2020, doi: 10.3390/molecules25194478.

S.-W. Wen, M.-T. Lee, and C. H. Chen, “Recent Development of Blue Fluorescent OLED Materials and Devices,” J. Disp. Technol., vol. 1, no. 1, pp. 90–99, Sep. 2005, doi: 10.1109/JDT.2005.852802.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int., vol. 55, no. 6, pp. 572–582, Jun. 2006, doi: 10.1002/pi.1974.

Downloads

Published

2022-04-09

How to Cite

Faisal Rasool, & Amir Sohail. (2022). Spectrophysics of Coumarin-Based Chromophore . OAJ Materials and Devices, 6(1). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/142