Lead potassium niobate thin films grown by Pulsed Laser Deposition
Keywords:
Ferroelectric thin film, TTB-structure, PLD, PKN, Pb2KNb5O15Abstract
By pulsed laser deposition, lead potassium niobate Pb2KNb5O15 was grown on (001) oriented Gd3Ga5O12 substrate using a platinum buffer layer. The PKN thin films were characterized by X-Ray diffraction and Scanning Electron Microscopy (SEM). The dependence of their structural properties as a function of the deposition parameters was studied. It has been found that the out of plane orientation of PKN film depends on the oxygen pressure used during the growth. Indeed, PKN thin film is oriented [001] for low pressure and is oriented [530] for high pressure. For these two orientations, the crystalline quality of PKN film was determined using omega scans.
References
K. Lin, H. Wu, F. Wang, Y. Rong, J. Chen, J. Deng, R. Yu, L. Fang, Q. Huang, X. Xing, Structure and Thermal Expansion in Tungsten Bronze Pb2KNb5O15, Dalton Trans. (2014). doi:10.1039/C3DT53340A.
Q. Simon, V. Dorcet, P. Boullay, V. Demange, S. Députier, V. Bouquet, M. Guilloux-Viry, Nanorods of Potassium Tantalum Niobate Tetragonal Tungsten Bronze Phase Grown by Pulsed Laser Deposition, Chem. Mater. 25 (2013) 2793–2802. doi:10.1021/cm401018k.
B. Allouche, Y. Gagou, F. Le Marrec, M.-A. Fremy, M. El Marssi, Bipolar resistive switching and substrate effect in GdK2Nb5O15 epitaxial thin films with tetragonal tungsten bronze type structure, Mater. Des. 112 (2016) 80–87. doi:10.1016/j.matdes.2016.09.047.
R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Electrical and Pyroelectric Properties of K2Pb2Gd2W2Ti4Nb4O30 Ferroelectrics, J. Electron. Mater. 42 (2013) 426–437. doi:10.1007/s11664-012-2376-z.
B. Allouche, Y. Gagou, M.-A. Fremy, F. Le Marrec, M. El Marssi, Resistive switching in a (0 0 ℓ)-oriented GdK2Nb5O15 thin film with tetragonal tungsten bronze type structure, Superlattices Microstruct. 72 (2014) 35–42. doi:10.1016/j.spmi.2014.04.008.
A. Simon, J. Ravez, Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials, Comptes Rendus Chim. 9 (2006) 1268–1276. doi:10.1016/j.crci.2006.04.001.
P. Sciau, G. Calvarin, J. Ravez, Structures des phases paraélectrique et ferroélectrique de Pb 2 KNb 5 O 15, Acta Crystallogr. B. 55 (1999) 459–466. doi:10.1107/S0108768198017984.
Y. Amira, Y. Gagou, A. Menny, D. Mezzane, A. Zegzouti, M. Elaatmani, M. El Marssi, Structural and Raman properties of the tetragonal tungsten bronze ferroelectric, Solid State Commun. 150 (2010) 419–423. doi:10.1016/j.ssc.2009.12.004.
K. Lin, H. Wu, F. Wang, Y. Rong, J. Chen, J. Deng, R. Yu, L. Fang, Q. Huang, X. Xing, Structure and Thermal Expansion in Tungsten Bronze Pb2KNb5O15, Dalton Trans. (2014). doi:10.1039/C3DT53340A.
J. Ravez, B. Elouadi, Couplage ferroelastique-ferroelectrique dans les phases de structure “bronzes de tungstene quadratiques,†Mater. Res. Bull. 10 (1975) 1249–1254. doi:10.1016/0025-5408(75)90035-5.
K. Sambasiva Rao, P. Murali Krishna, D. Madhava Prasad, Effect of simultaneous substitution of Li+ and Ti4+ in ceramics of Pb2KNb5O15 on structure, dielectric, modulus, impedance and conductivity properties, Phys. Status Solidi B. 244 (2007) 2267–2287. doi:10.1002/pssb.200642364.
J. Nakano, T. Yamada, Ferroelectric and optical properties of lead potassium niobate, J. Appl. Phys. 46 (1975) 2361. doi:10.1063/1.321914.
R.M. O’Connell, Cuts of lead potassium niobate, Pb2KNb5O15, for surface acoustic wave (SAW) applications, J. Appl. Phys. 49 (1978) 3324. doi:10.1063/1.325285.
A. Simon, J. Ravez, Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials, Comptes Rendus Chim. 9 (2006) 1268–1276. doi:10.1016/j.crci.2006.04.001.
H. Asada, A. Kuwahara, K. Sueyasu, T. Ishibashi, Q. Liu, G. Lou, K. Kishimoto, T. Koyanagi, Longitudinal Spin Seebeck Effect in Bi-substituted Neodymium Iron Garnet on Gadolinium Gallium Garnet Substrate Prepared by MOD Method, Phys. Procedia. 75 (2015) 932–938. doi:10.1016/j.phpro.2015.12.128.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License ( Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- To the extent transferable, copyright in and to the undersigned article is hereby assigned to Collaborating Academics and Open Access Journal Materials and Devices (ISSN: 2495-3911) for publication in the website of the journal and as part of a book (eventually a special volume) that could be produced in a printed and/or an electronic form.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Figures, tables, and other information present in articles published in the OAJ Materials and Devices may be reused without permission, provided the citation of original article is made in figure's or table's caption.