Vortex phase transition and superconducting properties in quasi-two-dimensional k-(BEDT-TTF)2Cu[N(CN)2]Br organic superconductor
Keywords:
ORGANIC SUPERCONDUCTOR, CRITICAL CURRENT, SHIELDING EFFECT, MAGNETIC SUSCEPTIBILITY, VORTEX PINNING.Abstract
We report investigations of the low temperature dc susceptibility and the magnetization on the layered organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br near 80 K and the effect of disorder on the superconducting transition temperature Tc. The shielding effect (S) and the critical current density Jc were studied (with H parallel to the c axis of the crystal). Jc can be estimated by analysis of magnetic hysteresis measurement using the Bean model. For each temperature value, we observed two regimes in the critical current density Jc(H). Our results show that the magnetic properties of these compounds depend strongly on the cooling rate. The structural transformation which occurs at the vicinity of 80 K very strongly influences the physics of vortex lattice and the associated magnetic behavior.
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License ( Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- To the extent transferable, copyright in and to the undersigned article is hereby assigned to Collaborating Academics and Open Access Journal Materials and Devices (ISSN: 2495-3911) for publication in the website of the journal and as part of a book (eventually a special volume) that could be produced in a printed and/or an electronic form.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Figures, tables, and other information present in articles published in the OAJ Materials and Devices may be reused without permission, provided the citation of original article is made in figure's or table's caption.