ZnTe/CdSe type-II core/shell spherical quantum dot under an external electric field


  • Ahmed Chafai




We have investigated in the framework of the envelope function approximation and taking into account the dependence of the electron effective mass on radius the energy of an electron inside a ZnTe/CdSe core/shell spherical quantum dot. In order to make the problem more realistic, we describe the conduction band-edge alignment between core and shell materials by a finite height barrier. By applying the Ritz variational principle the effect of the electric field on the electronic states was also examined. Our numerical results shows the opportunity to control the energy states position of the charge carriers inside our core/shell nanostructures by controlling the size (core radius, shell thickness) of the nanostructure and the strength of the external electric field.


T. Pradeep, Nano: The essentials understanding Nanoscience and Nanotechnology. Tata McGraw-Hill Publishing Company Limited, 2007.

M. Köhler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques. Wiley-VCH, 2007.

B Rogers, J Adam and S Pennathur, Nanotechnology: Understanding small systems. CRC Press, 2015.

S Thomas, N Kalarikkal, A.M Stephan, B. Raneesh and A.K. Haghi, ADVANCED NANOMATERIALS: Synthesis, Properties, and Applications. Apple Academic Press, 2014.

N. Porras-Montenegro, S.T. Pérez-Merchancano and A. Latgé, J. Appl. Phys. 74 (1993) 7624.

C. Bose, J. Appl. Phys. 83 (1998) 3089.

J.L. Marín, R. Riera and S A. Cruz, J. Phys.: Condens. Matter. 10 (1998) 1349.

P. Schillak and G. Czajkowski, Acta Phys. Pol., A 116 (2009) 871.

V.A. Holovatsky, O.M.Voitsekhivska, M.J. Mikhalyova and M.M. Tkach, J. Phys.: Condens. Matter. 12 (2000) 863.

R. Charrour, M. Bouhassoune, M. Fliyou, D. Bria and A Nougaoui, J. Phys.: Condens. Matter. 12 (2000) 4817.

D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotanjyan, H.K. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with morse confining potential, Superlattices Microstruct. (2014), doi: http://dx.doi.org/10.1016/j.spmi.2014.11.025.

L. Bouzaiene, H. Alamri, L. Sfaxi and H. Maaref, J. Alloys Compd. 655 (2016) 172.

A.J. Williamson, L.W. Wang and A Zunger, Phys. Rev. B 62 (2000) 12963.

A.H. Rodríguez, and H.Y. Ramírez, Eur. Phys. J. B 66 (2008) 235.

M. Grundmann, O. Stier and D. Bimberg, Phys. Rev. B 52 (1995) 11969.

M.H. Baier, C. Constantin, E. Pelucchi and E. Kapon, Appl. Phys. Lett. 84 (2004) 1967.

J.Kim, L. Wang and A. Zunger, Phys. Rev. B.57 (1998) R9408.

M. Sabaeian and M. Shahzadeh, Physica E. 68 (2015) 215.

N.V. Lien and N.M. Trinh, J. Phys.: Condens. Matter. 13 (2001) 2563.

L. He and W. Xie, Superlattices Microstruct. 47 (2010) 266.

F. J. Ribeiro, A. Latgé, M. Pacheco and Z. Barticevic, J. Appl. Phys. 82 (1997) 270.

J.W. Robinson, J.H. Rice, K.H. Lee, J.H. Na, R.A. Taylor, D.G. Hasko, R.A Oliver, M.J. Kappers, C.J. Humphreys, and G.D. Briggs, Appl. Phys. Lett. 86 (2005) 213103-213106.

F. Dujardin, E. Feddi, A. Oukerroum, J. Bosch Bailach, J. Martínez-Pastor and E. Assaid, J. Appl. Phys. 113 (2013) 064314.

P. Reiss, M. Protiere and L. Li, Reviews Core/Shell Semiconductor Nanocrystals. Wiley-VCH, (2009).

G.Z. Geng, G.X. Liu, F.K. Shan, A. Liu, Q. Zhang, W.J. Lee, B.C. Shin and H.Z. Wu, Current Appl.Phy. 14 (2014) S2.

F. Benhaddou, I. Zorkani, A. Jorio and E. Feddi, Excitonic transitions in spherical inhomogeneous QD, new monocolor nanosource, Phys. Rev. B: Condens. Matter, http://dx.doi.org/10.1016/j.physb.2015.07.033.

J. Bang, J. Park, J. Lee, N. Won, J. Nam, J. Lim, B. Chang, H. Lee, B. Chon, J. Shin, J. Park, J. Choi,K. Cho, S. Park,T. Joo and S. Kim, Chem. Mater. 22(2010) 233.

V.E. Borisenko and S. Ossicini, What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. Wiley-VCH Verlag & Co. KGaA, 2012.

S. Adachi, Properties of Group-IV, III--V and II--VI Semiconductors. John Wiley & Sons Ltd, 2005.




How to Cite

Chafai, A. (2018). ZnTe/CdSe type-II core/shell spherical quantum dot under an external electric field. OAJ Materials and Devices, 3(1). Retrieved from http://caip.co-ac.com/index.php/materialsanddevices/article/view/35