ZnTe/CdSe type-II core/shell spherical quantum dot under an external electric field
Keywords:
CORE/SHELL MATERIALS, NANOSTRUCTURES, QUANTUM DOTS, ELECTRIC FIELDAbstract
We have investigated in the framework of the envelope function approximation and taking into account the dependence of the electron effective mass on radius the energy of an electron inside a ZnTe/CdSe core/shell spherical quantum dot. In order to make the problem more realistic, we describe the conduction band-edge alignment between core and shell materials by a finite height barrier. By applying the Ritz variational principle the effect of the electric field on the electronic states was also examined. Our numerical results shows the opportunity to control the energy states position of the charge carriers inside our core/shell nanostructures by controlling the size (core radius, shell thickness) of the nanostructure and the strength of the external electric field.
References
T. Pradeep, Nano: The essentials understanding Nanoscience and Nanotechnology. Tata McGraw-Hill Publishing Company Limited, 2007.
M. Köhler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques. Wiley-VCH, 2007.
B Rogers, J Adam and S Pennathur, Nanotechnology: Understanding small systems. CRC Press, 2015.
S Thomas, N Kalarikkal, A.M Stephan, B. Raneesh and A.K. Haghi, ADVANCED NANOMATERIALS: Synthesis, Properties, and Applications. Apple Academic Press, 2014.
N. Porras-Montenegro, S.T. Pérez-Merchancano and A. Latgé, J. Appl. Phys. 74 (1993) 7624.
C. Bose, J. Appl. Phys. 83 (1998) 3089.
J.L. MarÃn, R. Riera and S A. Cruz, J. Phys.: Condens. Matter. 10 (1998) 1349.
P. Schillak and G. Czajkowski, Acta Phys. Pol., A 116 (2009) 871.
V.A. Holovatsky, O.M.Voitsekhivska, M.J. Mikhalyova and M.M. Tkach, J. Phys.: Condens. Matter. 12 (2000) 863.
R. Charrour, M. Bouhassoune, M. Fliyou, D. Bria and A Nougaoui, J. Phys.: Condens. Matter. 12 (2000) 4817.
D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotanjyan, H.K. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with morse confining potential, Superlattices Microstruct. (2014), doi: http://dx.doi.org/10.1016/j.spmi.2014.11.025.
L. Bouzaiene, H. Alamri, L. Sfaxi and H. Maaref, J. Alloys Compd. 655 (2016) 172.
A.J. Williamson, L.W. Wang and A Zunger, Phys. Rev. B 62 (2000) 12963.
A.H. RodrÃguez, and H.Y. RamÃrez, Eur. Phys. J. B 66 (2008) 235.
M. Grundmann, O. Stier and D. Bimberg, Phys. Rev. B 52 (1995) 11969.
M.H. Baier, C. Constantin, E. Pelucchi and E. Kapon, Appl. Phys. Lett. 84 (2004) 1967.
J.Kim, L. Wang and A. Zunger, Phys. Rev. B.57 (1998) R9408.
M. Sabaeian and M. Shahzadeh, Physica E. 68 (2015) 215.
N.V. Lien and N.M. Trinh, J. Phys.: Condens. Matter. 13 (2001) 2563.
L. He and W. Xie, Superlattices Microstruct. 47 (2010) 266.
F. J. Ribeiro, A. Latgé, M. Pacheco and Z. Barticevic, J. Appl. Phys. 82 (1997) 270.
J.W. Robinson, J.H. Rice, K.H. Lee, J.H. Na, R.A. Taylor, D.G. Hasko, R.A Oliver, M.J. Kappers, C.J. Humphreys, and G.D. Briggs, Appl. Phys. Lett. 86 (2005) 213103-213106.
F. Dujardin, E. Feddi, A. Oukerroum, J. Bosch Bailach, J. MartÃnez-Pastor and E. Assaid, J. Appl. Phys. 113 (2013) 064314.
P. Reiss, M. Protiere and L. Li, Reviews Core/Shell Semiconductor Nanocrystals. Wiley-VCH, (2009).
G.Z. Geng, G.X. Liu, F.K. Shan, A. Liu, Q. Zhang, W.J. Lee, B.C. Shin and H.Z. Wu, Current Appl.Phy. 14 (2014) S2.
F. Benhaddou, I. Zorkani, A. Jorio and E. Feddi, Excitonic transitions in spherical inhomogeneous QD, new monocolor nanosource, Phys. Rev. B: Condens. Matter, http://dx.doi.org/10.1016/j.physb.2015.07.033.
J. Bang, J. Park, J. Lee, N. Won, J. Nam, J. Lim, B. Chang, H. Lee, B. Chon, J. Shin, J. Park, J. Choi,K. Cho, S. Park,T. Joo and S. Kim, Chem. Mater. 22(2010) 233.
V.E. Borisenko and S. Ossicini, What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. Wiley-VCH Verlag & Co. KGaA, 2012.
S. Adachi, Properties of Group-IV, III--V and II--VI Semiconductors. John Wiley & Sons Ltd, 2005.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License ( Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- To the extent transferable, copyright in and to the undersigned article is hereby assigned to Collaborating Academics and Open Access Journal Materials and Devices (ISSN: 2495-3911) for publication in the website of the journal and as part of a book (eventually a special volume) that could be produced in a printed and/or an electronic form.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Figures, tables, and other information present in articles published in the OAJ Materials and Devices may be reused without permission, provided the citation of original article is made in figure's or table's caption.