Identification of mono- and few-layers graphene: Raman study


  • Mourad BOUTAHIR Laboratory advanced materials and applications (LEM2A) University Moulay Ismail




In this theoretical work, the Raman spectra were analyzed by considering the origin of the G peak, its shape, position and relative intensity as a function of the number of graphene layers. By using the spectral moment’s method, the Raman spectra of mono, bi and few-layers of graphene are calculated and a good agreement was found with group theory concerning the number of the Raman-active modes and the Raman measurements. Our results provide a Raman analysis to evaluate the number of layers in multilayer graphene.


K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Twodimensional atomic crystals,

Proceedings of the National Academy of Sciences of the United States of America 102 (30) (2005) 10451–10453.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric

field effect in atomically thin carbon films, science 306 (5696) (2004) 666–669.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, et al.,

Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics, The Journal

of Physical Chemistry B 108 (52) (2004) 19912–19916.

C. Oshima, A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces, Journal

of Physics: Condensed Matter 9 (1) (1997) 1.

R. Rosei, S. Modesti, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, Electronic structure of carbidic and graphitic

carbon on ni (111), Physical Review B 29 (6) (1984) 3416.

N. A. Kotov, Materials science: carbon sheet solutions, Nature 442 (7100) (2006) 254–255.

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, World scientific, 1998.

P. Avouris, G. Dresselhaus, M. Dresselhaus, Carbon nanotubes: synthesis, structure, properties and applications,

Topics in Applied Physics.

A. Jorio, Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology, ISRN

Nanotechnology 2012.

A. C. Ferrari, D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature

OAJ Materials and Devices, Vol 3, #1, 0503 (2018) – DOI: 10.23647/ca.md20180503M.Boutahir et al – Identification of mono- and few- layer graphene: Raman study

nanotechnology 8 (4) (2013) 235–246.

A. Gru neis, R. Saito, T. Kimura, L. Cancado, M. Pimenta, A. Jorio, A. Souza Filho, G. Dresselhaus, M. Dresselhaus,

Determination of two-dimensional phonon dispersion relation of graphite by raman spectroscopy, Physical Review B 65

(15) (2002) 155405.

O. Dubay, G. Kresse, Accurate density functional calculations for the phonon dispersion relations of graphite layer

and carbon nanotubes, Physical Review B 67 (3) (2003) 035401.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I.

McGovern, et al., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, Journal of

the American Chemical Society 131 (10) (2009) 3611– 3620.

A. Rahmani, J.-L. Sauvajol, J. Cambedouzou, C. Benoit, Raman-active modes in finite and infinite double-walled

carbon nanotubes, Physical Review B 71 (12) (2005) 125402.

A. Rahmani, P. Jund, C. Benoit, R. Jullien, Numerical study of the dynamic properties of silica aerogels, Journal of

Physics: Condensed Matter 13 (23) (2001) 5413.

A. Rahmani, J.-L. Sauvajol, S. Rols, C. Benoit, Nonresonant raman spectrum in infinite and finite single-wall carbon

nanotubes, Physical Review B 66 (12) (2002) 125404.

C. Benoit, E. Royer, G. Poussigue, The spectral moments method, Journal of Physics: Condensed Matter 4 (12)

(1992) 3125.

D. Levshov, T. Michel, M. Paillet, X. T. Than, H. N. Tran, R. Arenal, A. Rahmani, M. Boutahir, A.-A. Zahab, J.-L.

Sauvajol, Coupled vibrations in index-identified carbon nanotubes, MRS Online Proceedings Library Archive 1700 (2014) 69–77.

M. Boutahir, A. Rahmani, H. Chadli, A. Rahmani, Mechanical coupled vibrations in an individual double-walled

carbon nanotube, The European Physical Journal Applied Physics 74 (2) (2016) 24605.

M. Boutahir, A. Rahmani, B. Fakrach, H. Chadli, A. Rahmani, Theoretical study of electronic and vibrational

properties of dimer of single-wall carbon nanotubes, International Journal of Hydrogen Energy 41 (45) (2016) 20874–20879.

A. Rahmani, M. Boutahir, A. El Biyaali, B. Fakrach, H. Chadli, K. Sbai, P. Hermet, J.-L. Bantignies, A. Rahmani,

Theoretical infrared phonon modes in double-walled carbon nanotubes, RSC Advances 6 (47) (2016) 41025–41031.

M. Boutahir, A. Rahmani, H. Chadli, A. Rahmani, Vibrational properties of noncovalently oligothiophene-

functionalized graphene nanomaterials, in: Journal of Physics: Conference Series, Vol. 758, IOP Publishing, 2016, p.

M. Boutahir, A. Rahmani, H. Chadli, A. Rahmani, Electronic and vibrational properties of dimer of single-wall carbon

nanotubes, in: Renewable and Sustainable Energy Conference (IRSEC), 2015 3rd International, IEEE, 2015, pp. 1–5.

H. Ulbricht, G. Moos, T. Hertel, Interaction of c 60 with carbon nanotubes and graphite, Physical review letters 90 (9)

(2003) 095501.

M. Cardona, Resonance phenomena, in: Light Scattering in Solids II, Springer, 1982, pp. 19–178.

R. Bell, Methods in computational physics.

S. Guha, J. Menendez, J. Page, G. Adams, Empirical bond polarizability model for fullerenes, Physical Review B 53

(19) (1996) 13106.

L. Malard, M. Guimaraes, D. Mafra, A. Jorio, et al., Group-theory analysis of electrons and phonons in n-layer

graphene systems, Physical Review B 79 (12) (2009) 125426.

S. K. Saha, U. Waghmare, H. Krishnamurthy, A. Sood, Phonons in few-layer graphene and interplanar interaction: A

first-principles study, Physical Review B 78 (16) (2008) 165421.

J.-W. Jiang, H. Tang, B.-S. Wang, Z.-B. Su, Raman and infrared properties and layer dependence of the phonon

dispersions in multilayered graphene, Physical Review B 77 (23) (2008) 235421.

G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene

nanosheets, The Journal of Physical Chemistry C 112 (22) (2008) 8192–8195.

K. Sbai, A. Rahmani, B. Fakrach, H. Chadli, M. Benhamou, Modeling and simulation of vibrational breathing-like

modes in individual multiwalled carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures 56 (2014)


D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi, B. H. Park, Variations in the raman spectrum as a function of

the number of graphene layers, J. Korean Phys. Soc 55 (3) (2009) 1299–1303.

M. Dresselhaus, G. Dresselhaus, A. Jorio, A. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall

carbon nanotubes, Carbon 40 (12) (2002) 2043–2061.




How to Cite

BOUTAHIR, M. (2018). Identification of mono- and few-layers graphene: Raman study. OAJ Materials and Devices, 3(1). Retrieved from