Lecture on the anomalous diffusion in Condensed Matter Physics

Mabrouk Benhamou

Abstract


Diffusion is a natural or artificial process that governs many phenomena in nature. The most known diffusion is the Brownian or normal motion, where the mean-square-displacement of the tracer (diffusive particle among others) increases as the square-root of time. It is not the case, however, for complex systems, where the diffusion is rather slow, because at small-scales, these media present an heterogenous structure. This kind of slow motion is called subdiffusion, where the associated mean-square-displacement increases in time, with a non trivial exponent, alpha, whose value is between 0 and 1. In this review paper, we report on new trends dealing with the study of the anomalous diffusion in Condensed Matter Physics. The study is achieved using a theoretical approach that is based on a Generalized Langevin Equation. As particular crowded systems, we choose the so-called Pickering emulsions (oil-in-water), and we are interested in how the dispersed droplets (protected by small solid charged nanoparticles) can diffuse in the continuous phase (water). Dynamic study is accomplished through the mean-square-displacement and the velocity-autocorrelation-function. Finally, a comparison with Molecular Dynamics data is made.

Keywords


COMPLEX SYSTEMS, ANOMALOUS DIFFUSION, GENERALIZED LANGEVIN EQUATIONS, MEAN-SQUARE-DISPLACEMENT, VELOCITY-AUTOCORRELATION-FUNCTION, MOLECULAR DYNAMICS SIMULATION

Full Text:

PDF

References


A.Blumen, J.Klafter, G.Zumofen, in Optical Spectroscopy of Glasses, edited by I.Zschokke, Reidel, Dordrecht (1986)

S.Havlin, D.Ben-Avraham,Adv. Phys., vol.36, p 187(1987)

J.-P.Bouchaud, A.Georges, Phys. Rep., vol.195, p 127 (1990)

See, for instance, D.Nualart, Fractional Brownian Motion: Stochastic Calculus and Applications, Proceedings of the International Congress of Mathematicians, edited by European Mathematical Society, Madrid, Spain (2006)

S.Stachura, G.R.Kneller,Molecular Simulation, vol.40, p 245 (2014)

H.Scher, M.Lax, Phys. Rev. B, vol.7, p 4491 (1973); Phys. Rev. B, vol.7, p 4502 (1973); H.Scher, E.Montroll, Phys. Rev. B, vol.12, p 2455 (1975)

Q.Gu, E.A.Schiff, S.Grebner, R.Schwartz, Phys. Rev. Lett., vol.76, p 3196 (1996)

H.-P.Müller, R.Kimmich, J.Weis, Phys. Rev. E, vol.54, p 5278 (1996); A.Klemm, H.-P.Müller, R.Kimmich, Phys. Rev. E, vol.55, p 4413 (1997)

F.Amblard, A.C.Maggs, B.Yurke, A.N.Pargellis, S.Leibler, Phys. Rev. Lett., vol.77, p 4470 (1996)

E.R.Weeks, H.L.Swinney, Phys. Rev. E, vol.57, p 4915 (1998)

G.Zumofen, J.Klafter, A.Blumen, J. Stat. Phys., vol.65, p 991 (1991)

L.F.Richardson, Proc. R. Soc. LondonSer. A, vol.110, p 709 (1926); G.K.Batchelor, Q.J.R. Meteorol. Soc., vol.76, p 133 (1950); P.Tabeling, A.E.Hansen, J.Paret, in Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas, edited by G.M.Zaslavsky and S.Benkadda, Springer-Verlag, Berlin (1998)

S.C.Kou, X.S.Xie, Phys. Rev. Lett., vol.93, p 180603 (2004)

N.Pottier, A.Mauger, Physica A, vol.282, p 77 (2000)

E.Lutz, Phys. Rev. E, vol.64, p 051106 (2001)

N.Pottier, Physica A, vol.317, p 371(2003)

P.Debnath, W.Min, X.S.Xie, B.J.Cherayila, J. Chem. Phys., vol.123, p 204903 (2005)

I.Goychuk, P.Hänggi, Phys. Rev. Lett., vol.99, p 200601(2007); I.Goychuk, Phys. Rev. E, vol.80, p 046125(2009)

S.Burov, E.Barkai, Phys. Rev. E, vol.78, p 031112(2008)

R.Kubo, Rep. Progr. Phys., vol.29, p 255 (1966); also, R.Kubo, M.Toda, N.Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Vol. 31, Springer Science & Business Media (2012)

R.Metzler, E.Barkai, J.Klafter,Phys. Rev. Lett., vol.82, p 3563 (1999)

R.Metzler, J.Klafter, J. Phys. A: Math. Gen., vol.37, p R16 (2004)

T.Sandev, R.Metzler, Z.Tomovski, J. Phys. A: Math. Theor., vol.44, p 255203(2011)

R.Metzler, J.Klafter, Phys. Rep., vol.339, p 1 (2000)

R.Metzler, Phys. Rev. E, vol.62, p 6233(2000)

C.H.Eab, S.C.Lim, Physica A, vol.389, p 2510 (2010)

S.C.Lim, L.P.Teo, J. Stat. Mech., vol.42, p 065208(2009)

F.Mainardi, P.Pironi, Extracta Math., vol.10, p 140 (1996)

G.Mittag-Leffler, C. R. Acad. Sci., Paris, vol.137, p 554 (1903)

A.Wiman, Acta Math., vol.29, p 191 (1905)

R.P.Agarwal, C. R. Acad. Sci., Paris, vol.236, p 2031(1953)

P.Humbert, C. R. Acad. Sci., Paris,vol.236, p 1467 (1953)

P.Humbert, R.P.Agarwal, Bull. Sci. Math., vol.2, p 180 (1953)

T.R.Prabhakar, Yokohama Math. J., vol.19, p 7 (1971)

H.M.Srivastava, Z.Tomovski, Appl. Math. Comput., vol.211, p 198 (2009)

A.K.Shukla, J.C.Prajapati, J. Math. Anal. Appl., vol.336, p 797 (2007)

R.K.Saxena, A.M.Mathai, H.J.Haubold, Astrophys. Space Sci., vol.209, p 299 (2004)

R.Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore (2000)

R.Hilfer, J.Seybold, Spec. Funct., vol.17, p 637 (2006)

I.Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)

E.Capelas de Oliveira, F.Mainardi, J.Vaz Jr., Eur. Phys. J. Spec. Top., vol.193, p 161 (2011)

T.Sandev, Z.Tomovski, J.L.A.Dubbeldam, Physica A, vol.390, p 3627(2011)

W.Ramsden, Proc. Royal Soc. (London), vol.72, p 156 (1903)

S.U.Pickering, J. Chem. Soc. Transactions, vol.91, p 2001 (1907)

M.Badia, S.El-Moudny, M.Benhamou, M.El Ossmani, J. Mol. Liquids, vol.240, p 1 (2017)

B.J.Alder, T.E.Wainwright, J. Chem. Phys., vol.27, p 1208 (1957)

R.Aveyard, B.P.Binks, J.H.Clint, Adv.Coll.Inter.Sci., vol.100-102, p 503 (2003)

B.P.Binks, Curr. Opin. Coll. Inter. Sci., vol.7, p 21 (2002)

B.P.Binks, T.S.Horozov, Colloidal Particles at Liquid Interfaces, Cambridge University Press, Cambridge (2006)

Also, see a recent nice review by Y.Chevalier, M.-A.Bolzinger, Coll. Surf. A: Physicochemical and Engineering Aspects, vol.439, p 23 (2013)

N.P.Pardhy, B.M.Budhlall, Langmuir, vol.26, p 13130 (2010)

J.H.Chen, C.Y.Cheng, W.Y.Chiu, C.F.Lee, N.Y.Liang, Eur. Polym. J., vol.44, p 3271 (2008)

P.J.Colver, C.A.Colard, S.A.Bon, J. Am. Chem. Soc., vol.130, p 16850 (2008)

C.Wang, C.Zhang, Y.Li, Y.Chen, Z.Tong, Reactive and Functional Polymers, vol 69, p 750 (2009)

K.Zhang, W.Wu, H.Meng, K.Guo, J.F.Chen, Powder Technology, vol.190, 393 (2009)

H.Ma, M.Luo, S.Sanyal, K.Rege, L.L.Dai, Materials, vol.3, p 1186(2010)

G.Yin, Z.Zheng, H.Wang, Q.Du, J. Coll. Inter. Sci., vol.361, p 456 (2011)

M.Zhang, T.H.Ngo, N.I.Rabiah, T.P.Otanicar, P.E.Phelan, R.Swaminathan, L.L.Dai, Langmuir, vol.30, p 75 (2013)

L.Hao, C.Wang, Z.Tong, Journal of Controlled Release, vol.172, p 19 (2013)

A.K.Dyab, H.A.Al-Lohedan, H.A.Essawy, A.I.A.El-Mageed, F.Taha, J. Saudi Chem. Soc., vol.18, p 610 (2014)

J.Ji, S.Shu, F.Wang, Z.Li, J.Liu, Y.Song, Y.Jia, Nanoscale Research Letters, vol.9, p 1 (2014)

A.D.Dinsmore, M.F.Hsu, M.G.Nikolaides, M.Marquez, A.R.Bausch, D.A.Weitz, Science, vol.298, p 1006 (2002)

T.Chen, P.J.Colver, S.A.Bon, Advanced Materials, vol.19, p 2286 (2007)

W.Chen, X.Liu, Y.Liu, H.I.Kim, Coll. Polym. Sci., vol.288, p 1393 (2010)

S.El-Moudny, M.Badia, M.Benhamou, J. Mol. Liquids, vol.225, p 174 (2017)

R.Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press -2001); also, R.Zwanzig, Statistical Mechanics of Irreversibility, Vol. 3 of Lectures in Theoretical Physics, Interscience, New York (1961)

M.P.Allen, D.J.Tildesley, Computer Simulation of Liquids, Oxford University Press (1989)

H.J.Berendsen, J.P.M.Postma, W.F.van Gunsteren, A.R.H.J.DiNola, J.R.Haak, J. Chem. Phys., vol.81, p 3684 (1984)

S.Komura, A.Baumgärtner, J. Phys. France, vol.51, p 2395 (1990)

M.Benhamou, S.El-Moudny, submitted for publication, 2017


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.