@article{keita_ndiaye_Dia_Tabar_Sene_Mbow_2020, title={THEORETICAL STUDY OF SPECTRAL RESPONSES OF HETEROJONCTIONS BASED ON CuInSe2 and CuInS2}, volume={5}, url={http://caip.co-ac.com/index.php/materialsanddevices/article/view/120}, abstractNote={<p>In this work we study the spectral responses of thin films solar cells of heterojunctions based on CuInSe<sub>2</sub> and CuInS<sub>2</sub>. Four-layer structures are studied according to the n<sup>+</sup>n/pp<sup>+</sup> model. First we consider the structure ZnO(n<sup>+</sup>)/CdS(n)/CuInS<sub>2</sub>(p)/CuInSe<sub>2</sub>(p<sup>+</sup>) where CuInS<sub>2</sub> represent the base and CuInSe<sub>2</sub> the substrate in this model. Secondly we consider the structure ZnO(n<sup>+</sup>)/CdS(n)/CuInSe<sub>2</sub>(p)/ CuInS<sub>2</sub>(p<sup>+</sup>), for this model CuInSe<sub>2</sub> represent the base and CuInS<sub>2</sub> the substrate. ZnO and CdS are used as window layers in each structure. Using the continuity equation that governs transport of carriers in semiconductor material, models for calculating spectral responses are proposed for heterojunctions type n<sup>+</sup>n/pp<sup>+</sup> based on CuInSe<sub>2</sub> and CuInS<sub>2</sub>. For each structure we have presented the energy band diagram based on the Anderson model [1] and determined the expression of the photocurrent. The theoretical results obtained allow to compare the performances of these two models by optimizing the different parameters of each structure (base thickness, diffusion length, recombination velocity at the interface, etc.) in order to improve the overall efficiency of the collection of carriers.</p>}, number={1}, journal={OAJ Materials and Devices}, author={keita, elou and ndiaye, B. and Dia, M. and Tabar, Y. and Sene, C. and Mbow, B.}, year={2020}, month={Aug.} }