Chap. 18 - Artificial laminar oxide multiferroic magnetoelectric thin film structures

Elaboration methods and study by synchrotron radiation techniques

Authors

  • C. Mocuta Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
  • P. Ohresser Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
  • Antoine Barbier

Keywords:

multiferroics, magnetoelectric, nanomaterials, oxides, synchrotron radiation, perovskite, thin film

Abstract

Nanometric laminar two-dimensional artificial multiferroic oxide thin films can be elaborated using spinel ferrites and perovskite ferroelectrics like CoFe2O4 and BaTiO3. Such materials can retain their individual ferromagnetic or ferroelectric properties. In the thin epitaxial film regime a cross coupling of these properties is possible thanks to strain engineering. After introducing the concepts supporting artificial multiferroic laminar structures, the growth of strained BaTiO3 thin films and the growth of subsequent Co-ferrites layers will be detailed. With respect to the relative film thickness, a detailed understanding of the elastic behavior of these films will be proposed based on the characterization using several synchrotron radiation techniques including x-ray specular and off-specular diffraction, x-ray absorption spectroscopy, as well as x-ray magnetic circular dichroism.

References

P. Barone, B. Sanyal, S. Picozzi, Science and Technology of Atomic, Molecular,

Condensed Matter & Biological Systems, vol. 2, p 129 (2012)

L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang,

N. Balke, R. Ramesh, J. Phys. Condens. Matter, vol. 20, p 434220 (2008)

R. Ramesh, N. A. Spaldin, Nat. Mater., vol. 6, p 21 (2007)

A. Barbier, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, in Magnetic,

Ferroelectric, and Multiferroic Metal Oxides, edited by G. Korotcenkov and B.

Stojanovic, Amsterdam, Netherlands (2018)

N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar, J. Phys. Condens. Matter vol. 27, p

(2015)

S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y.

J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J. W. Wang, L. F. Yang, Y. Sun, Y. Z. Wu,

X. Xiao, X. F. Jin, J. Huang, C. Gao, X. F. Han, R. Ramesh, Phys. Rev. Lett. vol. 108, p

(2012)

Y. T. Yang, Y. Q. Song, D. H. Wang, J. L. Gao, L. Y. Lv, Q. Q. Cao, Y. W. Du, J. Appl.

Phys. vol. 115, p 024903 (2014)

M. Liu, B. M. Howe, L. Grazulis, K. Mahalingam, T. Nan, N. X. Sun, G. J. Brown, Adv.

Mater. vol. 25, p 4886 (2013)

A. K. Zvezdin, A. M. Kadomtseva, S. S. Krotov, A. P. Pyatakov, Y. F. Popov, G. P.

Vorob’Ev, J. Magn. Magn. Mater. vol. 300, p 224 (2006)

M. Bibes, A. Barthélémy, Nat. Mater. vol. 7, p 425 (2008)

J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M.

Bibes, A. Barthélémy, Nano Lett. vol. 12, p 1141 (2012)

V. Garcia, Comptes Rendus Phys. vol. 16, p 168 (2015)

N. Jedrecy, H. J. Von Bardeleben, V. Badjeck, D. Demaille, D. Stanescu, H. Magnan, A.

Barbier, Phys. Rev. B vol. 88, p 121409(R) (2013)

N. A. Hill, A. Filippetti, J. Magn. Magn. Mater. vol. 242245, p 976 (2002)

W. Ehrenstein, N. Mazur, J.Scott, Nature vol. 442 p 759 (2006)

H. Schmidt, J Phys. Cond. Matter vol. 20(43) 434201 (2008).

R. C. Kambale, D.-Y. Jeong, J. Ryu, R. C. Kambale, D.-Y. Jeong, J. Ryu, Adv.

Condens. Matter Phys. vol. 2012, 1 (2012)

J. Heyderman, L. Stamps, J. Phys. Condens. Matter vol. 25, p 363201 (2013)

P. Hajra, R. Maiti, D. Chakravorty, Trans. Indian Ceram. Soc. vol. 70, p 53 (2011)

M. Mostovoy, Nat. Mater. vol. 9, p 188 (2010)

R. N. P. Choudhary, S. K. Patri, AIP Conf. Proc. vol. 1063, p 263 (2008)

J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. vol. 23, p 1062 (2011)

S. Roy, S. B. Majumder, J. Alloys Compd. vol. 538, p 153 (2012)

P.-L. Nguyen, B. Sarpi, F. Petronio, C. Mocuta, P. Ohresser, D. Stanescu, J.-B. Moussy,

A. Vlad, A. Resta, E. Otero, R. Belkhou, J. Leroy, N. Jedrecy, H. Magnan, A. Barbier,

ACS Appl. Nano Mater. vol. 3(1), p 327 (2020)

Y. Cui, J. Briscoe, Y. Wang, N. V. Tarakina, S. Dunn, ACS Appl. Mater. Interfaces vol 9,

p 24518 (2017)

C.-W. Nan, G. Liu, Y. Lin, Appl. Phys. Lett vol. 83, p 4366 (2003)

T. Aghavnian, J. B. Moussy, D. Stanescu, R. Belkhou, N. Jedrecy, H. Magnan, P.

Ohresser, M. A. Arrio, P. Sainctavit, A. Barbier, J. Electron Spectros. Relat. Phenomena

vol. 202, p 16 (2015)

N. Jedrecy, T. Aghavnian, J. B. Moussy, H. Magnan, D. Stanescu, X. Portier, M. A.

Arrio, C. Mocuta, A. Vlad, R. Belkhou, P. Ohresser, A. Barbier, ACS Appl. Mater.

Interfaces vol. 10, p 28003 (2018)

F. Fang, Y. T. Xu, W. Yang, J. Appl. Phys. vol. 111, p 023906 (2012)

H. Yang, G. Zhang, Y. Lin, Mater. Lett. vol. 164, p 388 (2016)

S. Y. Wang, M. Li, W. F. Liu, J. Gao, Phys. Lett. A vol. 379(18?19), p 1288 (2015)

H. Zheng, J. Wang S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-

Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A.

Roytburd, R.H. Ramesh, Science vol. 303(5658), p. 661 (2004)

I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit,

A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, B. Dkhil, Phys. Rev. Lett. vol. 105,

p 057601 (2010)

C. Daumont, W. Ren, I. C. Infante, S. Lisenkov, J. Allibe, C. Carrétéro, S. Fusil, E.

Jacquet, T. Bouvet, F. Bouamrane, S. Prosandeev, G. Geneste, B. Dkhil, L. Bellaiche,

A. Barthélémy, M. Bibes, J. Phys. Condens. Matter vol. 24, p 162202 (2012)

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B.

Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science vol. 306,

p 1005 (2004)

A. Kvasov, A. K. Tagantsev, Phys. Rev. B vol. 87, p 184101 (2013)

J. Stangl, C. Mocuta, V. Chamard, D.Carbone, Nanobeam X?Ray Scattering: Probing

Matter at the Nanoscale, Wiley?VCH Verlag GmbH & Co. KGaA, Weinheim, (2013)

A. Barbier, C. Mocuta, G. Renaud, In situ Synchrotron Structural Studies of the growth

of oxides and metals, in Handbook of Thin FilmMaterials, Volume2: Characterization

and Spectroscopy of Thin Films, H.S. Nalwa, Academic Press, London (2002)

A. Barbier, C. Mocuta, R. Belkhou, Selected Synchrotron RadiationTechniques, in

Encyclopedia of Nanotechnology, B. Bhushnan, Springer, Dordrecht (2012)

M. M. Vijatovi?, J. D. Bobi?, B. D. Stojanovi?, Sci. Sinter. vol. 40, p 155 (2008)

M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, S.

Wada, J. Appl. Phys. vol. 98, p 014313 (2005)

M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel,

Appl. Phys. Rev. vol. 4, p 041305 (2017)

S. Datta, M. Rioult, D. Stanescu, H. Magnan, A. Barbier, Thin Solid Films vol. 607, p 7

(2016)

S. Matzen, J. B. Moussy, R. Mattana, F. Petroff, C. Gatel, B. Warot-Fonrose, J. C.

Cezar, A. Barbier, M. A. Arrio, P. Sainctavit, Appl. Phys. Lett. vol. 99, p 052514 (2011)

N. Quandt, R. Roth, F. Syrowatka, M. Steimecke, S. G. Ebbinghaus, J. Solid State

Chem. vol. 233, p 82 (2016)

J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, Jpn. J. Appl. Phys. 40 (2001) 4948]+[E.

Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournes, C. D’Orléan, J.-L.

Rehspringer, M. Kurmoo, Chem. Mater. vol. 16, p 5689 (2004)

H.S.C. O’Neill, A. Navrotsky, Am. Mineral. vol. 68, p 181 (1983)

S. Matzen, Films ultraminces épitaxiés de MnFe2O4, CoFe2O4 et NiFe2O4 pour le

filtrage de spin à température ambiante, PhD thesis, University Pierre et Marie Curie -

Paris VI (2011)

A. Barbier, R. Belkhou, P. Ohresser, M. Gautier-Soyer, O. Bezencenet, M. Mulazzi, M.

J. Guittet, and J. B. Moussy, Phys. Rev. B: Condens. Matter Mater. Phys. vol. 72, p

(2005)

A. Barbier, C. Mocuta, D. Stanescu, P. Jegou, N. Jedrecy, H. Magnan, J. Appl. Phys.

vol. 112, p 114116 (2012)

C. Mocuta, D. Bonamy, S. Stanescu, S. El Moussaoui, A. Barbier, F. Montaigne, F.

Maccherozzi, E. Bauer, R. Belkhou, Sci. Reports vol. 7, p 16970 (2017)

C. Mocuta, J. Stangl, K. Mundboth, T. H. Metzger, G. Bauer, I. A. Vartanyants, M.

Schmidbauer, T. Boeck, Phys. Rev. B vol. 77, p 245425 (2008)

A. Somogyi, C. Mocuta, AIMS Materials Science, vol. 2(2), p 122 (2015)

C. Mocuta, A. Barbier, A. V. Ramos, M.-J. Guittet, S. Stanescu, R. Mattana, C.

Deranlot, F. Petroff, Appl. Phys. Lett. vol. 91, p 241917 (2007)

C. Mocuta, A. Barbier, S. Stanescu, S. Matzen, J.-B. Moussy, E. Ziegler, J. Synchrotron

Rad. vol. 20, p 355 (2013)

L.G. Parratt, Phys. Rev. vol. 95, p 359 (1954)

J. Als Nielsen, D. McMorrow, Elements of Modern X-ray Physics, John Wiley and Sons,

nd edition, New York (2010)

B.E. Warren, X-ray diffraction, Reading, Mass., Addison-Wesley Pub. Co. (1969)

C. Mocuta, M.-I.Richard, J. Fouet, S. Stanescu, A. Barbier, C. Guichet, O. Thomas, S.

Hustache, A.V. Zozulya, D. Thiaudiere, J. Appl. Cryst. vol. 46, p 1842 (2013)

C. Mocuta, S. Stanescu, M. Gallard, A. Barbier, A. Dawiec, B. Kedjar, N. Leclercq, D.

Thiaudiere, J. Synchrotron Rad. vol. 25, p 204 (2018)

N. Leclercq, J. Berthault, F. Langlois, S. Le, S. Poirier, J. Bisou, F. Blache, K. Medjoubi,

C. Mocuta, ICALEPCS the 15th International Conference on Accelerator and Large

Experimental Control Systems, Melbourne, Australia (2015)

S. Roobol, W. Onderwaater, J. Drnec, R. Felici, J. Frenken, J. Appl. Cryst. vol. 48, p

(2015)

https://www.synchrotron-soleil.fr/en/beamlines/sixs

https://www.synchrotron-soleil.fr/en/beamlines/diffabs

S. Basolo, J.F. Bérar, N. Boudet, P. Breugnon, B. Chantepie, J.C. Clémens, P.

Delpierre, B. Dinkespiler, S. Hustache, K. Medjoubi, M. Ménouni, C. Morel, P. Pangaud,

E. Vigeolas, Nucl. Instrum. Methods Phys. Res. A, vol. 589, p 268 (2008)

P. Pangaud, S. Basolo, N. Boudet, J.-F. Berar, B. Chantepie, P. Delpierre, B.

Dinkespiler, S. Hustache, M. Menouni, C. Morel, Nucl. Instrum. Methods. A vol. 571, p

(2007)

P. Pangaud, S. Basolo, N. Boudet, J.-F. Berar, B. Chantepie, J. Clemens, P. Delpierre,

B. Dinkespiler, K. Medjoubi, S. Hustache, M. Menouni, C. Morel, Nucl. Instrum.

Methods Phys. Res. A vol 591, p 159 (2008)

F. de Groot, A. Kotani, Core Level Spectroscopy of Solids, CRC Press, eBook, (2008)

https://doi.org/10.1201/9781420008425

J. Stöhr, J. Magn. Magn. Mater. vol. 200, p 470 (1999)

B. T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. vol. 68, p 1943 (1992)

P. Carra, B. T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. vol. 70, p 694 (1993)

T. Aghavnian, Couplages magneto-électriques dans le système multiferroique artificial:

BaTiO3 / CoFe2O4, PhD thesis, University Paris - Saclay (2016)

Taking the notation of the paper of Chen et al. (C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V.

Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. vol. 75, p

(1995)) the orbital and spin moment for a 3d element can be calculated

respectively as -4q.Nh/3r and -(6p-4q).Nh/r with r the integral of the White line, p the

integral of the XMCD signal over L3, p the integral of the XMCD signal over L3+L2 and

Nh the number of 3d holes. As an example, if we consider an oxide with 2 different

contributions (for instance Fe3+-Oh and Fe3+-Td), that we will denote by 1 and 2 indexes.

We have for the orbital sum rules (the demonstration is the same for the spin sum

rules) a relation for each contributions: m orb(i) = 4qi.Nh/3ri. But from the XAS and XMCD

spectra it is only be possible to access to q (=q 1+q2) and r (=r1+r2).The total orbital

moment morb is equal to morb(1) + morb(2) = -4q 1.Nh/3r1 - 4q2.Nh/3r2 which cannot be

calculated from q and r alone.

L. Joly, B. Muller, E. Sternitzky, J.-G. Faullumel, A. Boulard, E. Otero, F. Choueikani, J.-

P. Kappler, M. Studniarek, M. Bowen, P. Ohresser, Journal of Synchrotron Radiation,

vol. 23(3), p 652 (2016)

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno,

F. Polack, B. Lagarde, J.P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J.P. Kappler, B.

Muller, O. Bunau, Ph. Sainctavit, Rev. Sci. Instrum. vol. 85, p 013106 (2014)

https://www.synchrotron-soleil.fr/en/beamlines/deimos

L. Joly, E. Otero, F. Choueikani, F. Marteau, L. Chapuis, P. Ohresser, Journal of

Synchrotron Radiation vol. 21(3), p 502 (2014)

J.-P. Kappler, E. Otero, W. Li, L. Joly, G. Schmerber, B. Muller, F. Scheurer, F. Leduc,

B. Gobaut, L. Poggini, G. Serrano, F. Choueikani, E. Lhotel, A. Cornia, R. Sessoli, M.

Mannini, M.-A. Arrio, Ph. Sainctavit, P. Ohresser, Journal of Synchrotron Radiation vol.

, p 1727 (2018)

M. Gallard, M.S. Amara, M. Putero, N. Burle, C. Guichet, S. Escoubas, M.-I. Richard,

C. Mocuta, P. Noé, O. Thomas, New insights into the thermomechanical behavior of

Ge-rich GeTe thin films during crystallization, Acta Mater. vol. 191, p. 60 (2020)

D.T. Brower, R.E. Revay, T.C. Hunag, Powder Diffraction vol. 11(2), p. 114 (1996)

H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, D.G. Schlom, Appl. Phys. Lett. vol. 84(17), p

(2004)

Downloads

Published

2022-01-07

How to Cite

Mocuta, C., Ohresser, P., & Barbier, A. (2022). Chap. 18 - Artificial laminar oxide multiferroic magnetoelectric thin film structures: Elaboration methods and study by synchrotron radiation techniques. OAJ Materials and Devices, 5(2). Retrieved from https://caip.co-ac.com/index.php/materialsanddevices/article/view/136