Chap. 18 - Artificial laminar oxide multiferroic magnetoelectric thin film structures
Elaboration methods and study by synchrotron radiation techniques
Keywords:
multiferroics, magnetoelectric, nanomaterials, oxides, synchrotron radiation, perovskite, thin filmAbstract
Nanometric laminar two-dimensional artificial multiferroic oxide thin films can be elaborated using spinel ferrites and perovskite ferroelectrics like CoFe2O4 and BaTiO3. Such materials can retain their individual ferromagnetic or ferroelectric properties. In the thin epitaxial film regime a cross coupling of these properties is possible thanks to strain engineering. After introducing the concepts supporting artificial multiferroic laminar structures, the growth of strained BaTiO3 thin films and the growth of subsequent Co-ferrites layers will be detailed. With respect to the relative film thickness, a detailed understanding of the elastic behavior of these films will be proposed based on the characterization using several synchrotron radiation techniques including x-ray specular and off-specular diffraction, x-ray absorption spectroscopy, as well as x-ray magnetic circular dichroism.
References
P. Barone, B. Sanyal, S. Picozzi, Science and Technology of Atomic, Molecular,
Condensed Matter & Biological Systems, vol. 2, p 129 (2012)
L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang,
N. Balke, R. Ramesh, J. Phys. Condens. Matter, vol. 20, p 434220 (2008)
R. Ramesh, N. A. Spaldin, Nat. Mater., vol. 6, p 21 (2007)
A. Barbier, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, in Magnetic,
Ferroelectric, and Multiferroic Metal Oxides, edited by G. Korotcenkov and B.
Stojanovic, Amsterdam, Netherlands (2018)
N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar, J. Phys. Condens. Matter vol. 27, p
(2015)
S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y.
J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J. W. Wang, L. F. Yang, Y. Sun, Y. Z. Wu,
X. Xiao, X. F. Jin, J. Huang, C. Gao, X. F. Han, R. Ramesh, Phys. Rev. Lett. vol. 108, p
(2012)
Y. T. Yang, Y. Q. Song, D. H. Wang, J. L. Gao, L. Y. Lv, Q. Q. Cao, Y. W. Du, J. Appl.
Phys. vol. 115, p 024903 (2014)
M. Liu, B. M. Howe, L. Grazulis, K. Mahalingam, T. Nan, N. X. Sun, G. J. Brown, Adv.
Mater. vol. 25, p 4886 (2013)
A. K. Zvezdin, A. M. Kadomtseva, S. S. Krotov, A. P. Pyatakov, Y. F. Popov, G. P.
Vorob’Ev, J. Magn. Magn. Mater. vol. 300, p 224 (2006)
M. Bibes, A. Barthélémy, Nat. Mater. vol. 7, p 425 (2008)
J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M.
Bibes, A. Barthélémy, Nano Lett. vol. 12, p 1141 (2012)
V. Garcia, Comptes Rendus Phys. vol. 16, p 168 (2015)
N. Jedrecy, H. J. Von Bardeleben, V. Badjeck, D. Demaille, D. Stanescu, H. Magnan, A.
Barbier, Phys. Rev. B vol. 88, p 121409(R) (2013)
N. A. Hill, A. Filippetti, J. Magn. Magn. Mater. vol. 242245, p 976 (2002)
W. Ehrenstein, N. Mazur, J.Scott, Nature vol. 442 p 759 (2006)
H. Schmidt, J Phys. Cond. Matter vol. 20(43) 434201 (2008).
R. C. Kambale, D.-Y. Jeong, J. Ryu, R. C. Kambale, D.-Y. Jeong, J. Ryu, Adv.
Condens. Matter Phys. vol. 2012, 1 (2012)
J. Heyderman, L. Stamps, J. Phys. Condens. Matter vol. 25, p 363201 (2013)
P. Hajra, R. Maiti, D. Chakravorty, Trans. Indian Ceram. Soc. vol. 70, p 53 (2011)
M. Mostovoy, Nat. Mater. vol. 9, p 188 (2010)
R. N. P. Choudhary, S. K. Patri, AIP Conf. Proc. vol. 1063, p 263 (2008)
J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. vol. 23, p 1062 (2011)
S. Roy, S. B. Majumder, J. Alloys Compd. vol. 538, p 153 (2012)
P.-L. Nguyen, B. Sarpi, F. Petronio, C. Mocuta, P. Ohresser, D. Stanescu, J.-B. Moussy,
A. Vlad, A. Resta, E. Otero, R. Belkhou, J. Leroy, N. Jedrecy, H. Magnan, A. Barbier,
ACS Appl. Nano Mater. vol. 3(1), p 327 (2020)
Y. Cui, J. Briscoe, Y. Wang, N. V. Tarakina, S. Dunn, ACS Appl. Mater. Interfaces vol 9,
p 24518 (2017)
C.-W. Nan, G. Liu, Y. Lin, Appl. Phys. Lett vol. 83, p 4366 (2003)
T. Aghavnian, J. B. Moussy, D. Stanescu, R. Belkhou, N. Jedrecy, H. Magnan, P.
Ohresser, M. A. Arrio, P. Sainctavit, A. Barbier, J. Electron Spectros. Relat. Phenomena
vol. 202, p 16 (2015)
N. Jedrecy, T. Aghavnian, J. B. Moussy, H. Magnan, D. Stanescu, X. Portier, M. A.
Arrio, C. Mocuta, A. Vlad, R. Belkhou, P. Ohresser, A. Barbier, ACS Appl. Mater.
Interfaces vol. 10, p 28003 (2018)
F. Fang, Y. T. Xu, W. Yang, J. Appl. Phys. vol. 111, p 023906 (2012)
H. Yang, G. Zhang, Y. Lin, Mater. Lett. vol. 164, p 388 (2016)
S. Y. Wang, M. Li, W. F. Liu, J. Gao, Phys. Lett. A vol. 379(18?19), p 1288 (2015)
H. Zheng, J. Wang S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-
Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A.
Roytburd, R.H. Ramesh, Science vol. 303(5658), p. 661 (2004)
I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit,
A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, B. Dkhil, Phys. Rev. Lett. vol. 105,
p 057601 (2010)
C. Daumont, W. Ren, I. C. Infante, S. Lisenkov, J. Allibe, C. Carrétéro, S. Fusil, E.
Jacquet, T. Bouvet, F. Bouamrane, S. Prosandeev, G. Geneste, B. Dkhil, L. Bellaiche,
A. Barthélémy, M. Bibes, J. Phys. Condens. Matter vol. 24, p 162202 (2012)
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B.
Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science vol. 306,
p 1005 (2004)
A. Kvasov, A. K. Tagantsev, Phys. Rev. B vol. 87, p 184101 (2013)
J. Stangl, C. Mocuta, V. Chamard, D.Carbone, Nanobeam X?Ray Scattering: Probing
Matter at the Nanoscale, Wiley?VCH Verlag GmbH & Co. KGaA, Weinheim, (2013)
A. Barbier, C. Mocuta, G. Renaud, In situ Synchrotron Structural Studies of the growth
of oxides and metals, in Handbook of Thin FilmMaterials, Volume2: Characterization
and Spectroscopy of Thin Films, H.S. Nalwa, Academic Press, London (2002)
A. Barbier, C. Mocuta, R. Belkhou, Selected Synchrotron RadiationTechniques, in
Encyclopedia of Nanotechnology, B. Bhushnan, Springer, Dordrecht (2012)
M. M. Vijatovi?, J. D. Bobi?, B. D. Stojanovi?, Sci. Sinter. vol. 40, p 155 (2008)
M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, S.
Wada, J. Appl. Phys. vol. 98, p 014313 (2005)
M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel,
Appl. Phys. Rev. vol. 4, p 041305 (2017)
S. Datta, M. Rioult, D. Stanescu, H. Magnan, A. Barbier, Thin Solid Films vol. 607, p 7
(2016)
S. Matzen, J. B. Moussy, R. Mattana, F. Petroff, C. Gatel, B. Warot-Fonrose, J. C.
Cezar, A. Barbier, M. A. Arrio, P. Sainctavit, Appl. Phys. Lett. vol. 99, p 052514 (2011)
N. Quandt, R. Roth, F. Syrowatka, M. Steimecke, S. G. Ebbinghaus, J. Solid State
Chem. vol. 233, p 82 (2016)
J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, Jpn. J. Appl. Phys. 40 (2001) 4948]+[E.
Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournes, C. D’Orléan, J.-L.
Rehspringer, M. Kurmoo, Chem. Mater. vol. 16, p 5689 (2004)
H.S.C. O’Neill, A. Navrotsky, Am. Mineral. vol. 68, p 181 (1983)
S. Matzen, Films ultraminces épitaxiés de MnFe2O4, CoFe2O4 et NiFe2O4 pour le
filtrage de spin à température ambiante, PhD thesis, University Pierre et Marie Curie -
Paris VI (2011)
A. Barbier, R. Belkhou, P. Ohresser, M. Gautier-Soyer, O. Bezencenet, M. Mulazzi, M.
J. Guittet, and J. B. Moussy, Phys. Rev. B: Condens. Matter Mater. Phys. vol. 72, p
(2005)
A. Barbier, C. Mocuta, D. Stanescu, P. Jegou, N. Jedrecy, H. Magnan, J. Appl. Phys.
vol. 112, p 114116 (2012)
C. Mocuta, D. Bonamy, S. Stanescu, S. El Moussaoui, A. Barbier, F. Montaigne, F.
Maccherozzi, E. Bauer, R. Belkhou, Sci. Reports vol. 7, p 16970 (2017)
C. Mocuta, J. Stangl, K. Mundboth, T. H. Metzger, G. Bauer, I. A. Vartanyants, M.
Schmidbauer, T. Boeck, Phys. Rev. B vol. 77, p 245425 (2008)
A. Somogyi, C. Mocuta, AIMS Materials Science, vol. 2(2), p 122 (2015)
C. Mocuta, A. Barbier, A. V. Ramos, M.-J. Guittet, S. Stanescu, R. Mattana, C.
Deranlot, F. Petroff, Appl. Phys. Lett. vol. 91, p 241917 (2007)
C. Mocuta, A. Barbier, S. Stanescu, S. Matzen, J.-B. Moussy, E. Ziegler, J. Synchrotron
Rad. vol. 20, p 355 (2013)
L.G. Parratt, Phys. Rev. vol. 95, p 359 (1954)
J. Als Nielsen, D. McMorrow, Elements of Modern X-ray Physics, John Wiley and Sons,
nd edition, New York (2010)
B.E. Warren, X-ray diffraction, Reading, Mass., Addison-Wesley Pub. Co. (1969)
C. Mocuta, M.-I.Richard, J. Fouet, S. Stanescu, A. Barbier, C. Guichet, O. Thomas, S.
Hustache, A.V. Zozulya, D. Thiaudiere, J. Appl. Cryst. vol. 46, p 1842 (2013)
C. Mocuta, S. Stanescu, M. Gallard, A. Barbier, A. Dawiec, B. Kedjar, N. Leclercq, D.
Thiaudiere, J. Synchrotron Rad. vol. 25, p 204 (2018)
N. Leclercq, J. Berthault, F. Langlois, S. Le, S. Poirier, J. Bisou, F. Blache, K. Medjoubi,
C. Mocuta, ICALEPCS the 15th International Conference on Accelerator and Large
Experimental Control Systems, Melbourne, Australia (2015)
S. Roobol, W. Onderwaater, J. Drnec, R. Felici, J. Frenken, J. Appl. Cryst. vol. 48, p
(2015)
https://www.synchrotron-soleil.fr/en/beamlines/sixs
https://www.synchrotron-soleil.fr/en/beamlines/diffabs
S. Basolo, J.F. Bérar, N. Boudet, P. Breugnon, B. Chantepie, J.C. Clémens, P.
Delpierre, B. Dinkespiler, S. Hustache, K. Medjoubi, M. Ménouni, C. Morel, P. Pangaud,
E. Vigeolas, Nucl. Instrum. Methods Phys. Res. A, vol. 589, p 268 (2008)
P. Pangaud, S. Basolo, N. Boudet, J.-F. Berar, B. Chantepie, P. Delpierre, B.
Dinkespiler, S. Hustache, M. Menouni, C. Morel, Nucl. Instrum. Methods. A vol. 571, p
(2007)
P. Pangaud, S. Basolo, N. Boudet, J.-F. Berar, B. Chantepie, J. Clemens, P. Delpierre,
B. Dinkespiler, K. Medjoubi, S. Hustache, M. Menouni, C. Morel, Nucl. Instrum.
Methods Phys. Res. A vol 591, p 159 (2008)
F. de Groot, A. Kotani, Core Level Spectroscopy of Solids, CRC Press, eBook, (2008)
https://doi.org/10.1201/9781420008425
J. Stöhr, J. Magn. Magn. Mater. vol. 200, p 470 (1999)
B. T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. vol. 68, p 1943 (1992)
P. Carra, B. T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. vol. 70, p 694 (1993)
T. Aghavnian, Couplages magneto-électriques dans le système multiferroique artificial:
BaTiO3 / CoFe2O4, PhD thesis, University Paris - Saclay (2016)
Taking the notation of the paper of Chen et al. (C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V.
Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. vol. 75, p
(1995)) the orbital and spin moment for a 3d element can be calculated
respectively as -4q.Nh/3r and -(6p-4q).Nh/r with r the integral of the White line, p the
integral of the XMCD signal over L3, p the integral of the XMCD signal over L3+L2 and
Nh the number of 3d holes. As an example, if we consider an oxide with 2 different
contributions (for instance Fe3+-Oh and Fe3+-Td), that we will denote by 1 and 2 indexes.
We have for the orbital sum rules (the demonstration is the same for the spin sum
rules) a relation for each contributions: m orb(i) = 4qi.Nh/3ri. But from the XAS and XMCD
spectra it is only be possible to access to q (=q 1+q2) and r (=r1+r2).The total orbital
moment morb is equal to morb(1) + morb(2) = -4q 1.Nh/3r1 - 4q2.Nh/3r2 which cannot be
calculated from q and r alone.
L. Joly, B. Muller, E. Sternitzky, J.-G. Faullumel, A. Boulard, E. Otero, F. Choueikani, J.-
P. Kappler, M. Studniarek, M. Bowen, P. Ohresser, Journal of Synchrotron Radiation,
vol. 23(3), p 652 (2016)
P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno,
F. Polack, B. Lagarde, J.P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J.P. Kappler, B.
Muller, O. Bunau, Ph. Sainctavit, Rev. Sci. Instrum. vol. 85, p 013106 (2014)
https://www.synchrotron-soleil.fr/en/beamlines/deimos
L. Joly, E. Otero, F. Choueikani, F. Marteau, L. Chapuis, P. Ohresser, Journal of
Synchrotron Radiation vol. 21(3), p 502 (2014)
J.-P. Kappler, E. Otero, W. Li, L. Joly, G. Schmerber, B. Muller, F. Scheurer, F. Leduc,
B. Gobaut, L. Poggini, G. Serrano, F. Choueikani, E. Lhotel, A. Cornia, R. Sessoli, M.
Mannini, M.-A. Arrio, Ph. Sainctavit, P. Ohresser, Journal of Synchrotron Radiation vol.
, p 1727 (2018)
M. Gallard, M.S. Amara, M. Putero, N. Burle, C. Guichet, S. Escoubas, M.-I. Richard,
C. Mocuta, P. Noé, O. Thomas, New insights into the thermomechanical behavior of
Ge-rich GeTe thin films during crystallization, Acta Mater. vol. 191, p. 60 (2020)
D.T. Brower, R.E. Revay, T.C. Hunag, Powder Diffraction vol. 11(2), p. 114 (1996)
H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, D.G. Schlom, Appl. Phys. Lett. vol. 84(17), p
(2004)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 C. Mocuta, P. Ohresser, Antoine Barbier

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License ( Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- To the extent transferable, copyright in and to the undersigned article is hereby assigned to Collaborating Academics and Open Access Journal Materials and Devices (ISSN: 2495-3911) for publication in the website of the journal and as part of a book (eventually a special volume) that could be produced in a printed and/or an electronic form.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Figures, tables, and other information present in articles published in the OAJ Materials and Devices may be reused without permission, provided the citation of original article is made in figure's or table's caption.