A A XRD Study of the CuAl Layered Double Hydroxide Synthesis Evolution

Authors

  • SORELIS NIETO-ZAMBRANO UNIVERSITY OF CARTAGENA, COLOMBIA
  • E. Ramos-Ramírez Preparation, Processing and Characterization of Catalytic and Ceramic Materials / Chemistry Department (DCNE) / University of Guanajuato, Guanajuato, México
  • F.J. Tzompantzi-Morales Metropolitan Autonomous University – Iztapalapa, Chemistry Department. San Rafael Atlixco. Avenue # 186. México. 09340 D.F.
  • N. Gutiérrez-Ortega Department of Civil and Environmental Engineering, Engineering Division, Guanajuato Campus, University of Guanajuato. 77 th Juarez St. Downtown. Guanajuato, GTO, C.P. 36000. México

Keywords:

CuAl LDH; synthesis improvement; hydroxycarbonate; XRD reflections; carbonate ratio; band gap energy

Abstract

It is a challenge to determine the active part of a solid phase in chemical process when the purity of the aforesaid is not sufficient and could jeopardize the solid real applications.  CuAl LDH phase has been obtained with low percentage of impurities and the intention to use it as photoreduction or photoxidation catalyst and /or templating agent in the design of nanohybrid composites photocatalysts, for CO2 storage that could facilitate its later abatement and/or highly efficient semiconductor material. A set of synthesis were implemented with a mixture of Cu(NO3)22.5H2O and Al(NO3)3.9H2O with Na2CO3 and NaOH using coprecipitation at variable pH.  Keeping constant a low CO32-/Cu2+ + Al3+ fraction in all sets, constant basic pH and ageing time (96h) with slight variations in T, resulted in mixed phases of malachite, CuAl LDH and traces of Cu(OH)2.  At basic pH and T with different ageing time, similar XRD patterns were measured with noticeable differences, though. When the carbonate ratio, ageing time, and pH were constant (7.50, 96 h, 9.24), modest changes in T generated key dissimilitude in the diffractograms.  The resulting band gap energy of this LDH coincided with the visible spectral region energy. A more precise tuning of variables has led to a high degree of optimization of the CuAl LDH and further contributes to comprehend how varied synthesis conditions influence this metastable hydrotalcite Obtention.

References

Abderrazek, K., Najoua, F. S., & Srasra, E. (2016). Synthesis and characterization of [Zn-Al] LDH: Study of the effect of calcination on the photocatalytic activity. Applied Clay Science, 119, 229–235. https://doi.org/10.1016/j.clay.2015.10.014

Alejandre, A., Medina, F., Rodriguez, X., Salagre, P., & Sueiras, J. E. (1999). Preparation and Activity of Cu – Al Mixed Oxides via Hydrotalcite-like Precursors for the Oxidation of Phenol Aqueous Solutions. 324, 311–324.

Alejandre, A., Medina, F., Salagre, P., Correig, X., & Sueiras, J. E. (1999). Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors. Chemistry of Materials, 11(4), 939–948. https://doi.org/10.1021/cm980500f

Aragaw, S. G., Feysia, G. B., Gultom, N. S., Kuo, D.-H., Abdullah, H., Chen, X., & Zelekew, O. A. (2022). Synthesis of CuAl-layered double hydroxide/MgO2nanocomposite catalyst for the degradation of organic dye under dark condition. Applied Water Science, 12(6). https://search.ebscohost.com/login.aspx?direct=true&db=eoah&AN=59493568&lang=es&site=ehost-live

Ayala, A., Fetter, G., Palomares, E., & Bosch, P. (2011). CuNi/Al hydrotalcites synthesized in presence of microwave irradiation. Materials Letters, 65(11), 1663–1665. https://doi.org/10.1016/j.matlet.2011.03.004

Balduzzi.L., Prinetto.F.Ghiotti.G, Bianchini.A., Livi.M., Vaccari. A. (2001). FT-IR study of Pt, Cu and Pt-Cu phases supported on hydrotalcite-derived mixed oxides. Elsevier.

Balsamo, N., Mendieta, S., Oliva, M., Eimer, G., & Crivello, M. (2012). Synthesis and Characterization of Metal Mixed Oxides from Layered Double Hydroxides. Procedia Materials Science, 1, 506–513. https://doi.org/10.1016/j.mspro.2012.06.068

Behrens, M., & Schlögl, R. (2013). How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts. In Zeitschrift fur Anorganische und Allgemeine Chemie (Vol. 639, Issue 15, pp. 2683–2695). https://doi.org/10.1002/zaac.201300356

Bravo-Suárez, J. J., Páez-Mozo, E. A., & Oyama, S. T. (2004). Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quimica Nova, 27(4), 601–604. https://doi.org/10.1590/S0100-40422004000400015

Bukhtiyarova, M. V. (2019). A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry, 269, 494–506. https://doi.org/10.1016/j.jssc.2018.10.018

Busetto.C., Del Piero.G., Manara.G., Trifiro.F., Vaccari. A. (1984). Catalysts for Low-Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-like Precursors. Journal of Catalysis, 266, 260–266. https://doi.org/10.1016/0021-9517(84)90130-1

Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173–301. https://doi.org/10.1016/0920-5861(91)80068-K

Chaboy, J., Muñoz-Páez, A., Merkling, P. J., & Marcos, E. S. (2006). The hydration of Cu2+: Can the Jahn-Teller effect be detected in liquid solution? Journal of Chemical Physics, 124(6). https://doi.org/10.1063/1.2165189

Chakraborty, S., Sarkar, I., Haldar, K., Pal, S. K., & Chakraborty, S. (2015). Synthesis of Cu-Al layered double hydroxide nanofluid and characterization of its thermal properties. Applied Clay Science, 107, 98–108. https://doi.org/10.1016/j.clay.2015.01.009

Conterosito, E., Gianotti, V., Palin, L., Boccaleri, E., Viterbo, D., & Milanesio, M. (2018). Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorganica Chimica Acta, 470, 36–50. https://doi.org/10.1016/j.ica.2017.08.007

Costantino, U., Marmottini, F., Nocchetti, M., & Vivani, R. (1998). New Synthetic Routes to Hydrotalcite-Like Compounds ? Characterisation and Properties of the Obtained Materials. European Journal of Inorganic Chemistry, 1998(10), 1439–1446. https://doi.org/10.1002/(sici)1099-0682(199810)1998

Crivello, M., Pérez, C., Herrero, E., Ghione, G., Casuscelli, S., & Rodríguez-Castellón, E. (2005). Characterization of Al-Cu and Al-Cu-Mg mixed oxides and their catalytic activity in dehydrogenation of 2-octanol. Catalysis Today, 107–108, 215–222. https://doi.org/10.1016/j.cattod.2005.07.168

Evans, D. G., & Slade, R. C. T. (2006). Structural Aspects of Layered Double Hydroxides. Structure & Bonding, 119(December 2005), 1–87. https://doi.org/10.1007/430_005

Feitknecht.W., Gerber. M. (1942). Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze III. Über Magnesium-Aluminiumdoppelhydroxyd. Helv.Chim. Acta, 25(1), 131–137.

Forano, C., Costantino, U., Prévot, V., & Gueho, C. T. (2013). Layered double hydroxides (LDH). In Developments in Clay Science (Vol. 5). https://doi.org/10.1016/B978-0-08-098258-8.00025-0

Ginés, M. J. L., Amadeo, N., Laborde, M., & Apesteguía, C. R. (1995). Activity and structure-sensitivity of the water-gas shift reaction over Cu?Zn?Al mixed oxide catalysts. Applied Catalysis A, General, 131(2), 283–296. https://doi.org/10.1016/0926-860X(95)00146-8

Han, W., Hao, H., Zhang, Q., & Shao, Z. (2023). Activated biochar loaded CuAl-layered double hydroxide composite for the removal of aniline aerofloat in wastewater: Synthesis, characterization, and adsorption mechanism. Journal of Environmental Chemical Engineering, 11(2). https://search.ebscohost.com/login.aspx?direct=true&db=eoah&AN=61622186&lang=es&site=ehost-live

Haraketi, M., Hosni, K., & Srasra, E. (2017). Intercalation behavior of salicylic acid into calcined Cu-Al-layered double hydroxides for a controlled release formulation. Surface Engineering and Applied Electrochemistry, 53(4), 360–370. https://doi.org/10.3103/S106837551704007X

Herman, R. G., Klier, K., Simmons, G. W., Finn, B. P., Bulko, J. B., & Kobylinski, T. P. (1978). Catalytic synthesis of methanol from CO/H2. I. Phase composition, electronic properties and activity of the Cu/ZnO/M2O3 catalysts. Preprints, 23(2), 595–615.

Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the “Debye-Scherrer equation.” Nature Nanotechnology, 6(9), 534. https://doi.org/10.1038/nnano.2011.145

Ichikawa.S.Miyazoe.S., Matsuoka. O. (2011). A Highly Efficient Cu/Al(OH)3 Catalyst for the Hydration of Acrylonitrile to Acrylamide. Chem. Lett., 40, 512–514. https://doi.org/10.1246/cl.2011.512

Kannan, S., Rives, V., & Knözinger, H. (2004). High-temperature transformations of Cu-rich hydrotalcites. Journal of Solid State Chemistry, 177(1), 319–331. https://doi.org/10.1016/j.jssc.2003.08.023

Kloprogge, J. T., Hickey, L., & Frost, R. L. (2004). The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. Journal of Solid State Chemistry, 177(11), 4047–4057. https://doi.org/10.1016/j.jssc.2004.07.010

Köckerling, M., Geismar, G., Henkel, G., & Nolting, H.-F. (1997). X-Ray absorption spectroscopic studies on copper-containing hydrotalcite. Journal of the Chemical Society, Faraday Transactions, 93(3), 481–484. https://doi.org/10.1039/A605289D

Landi, S., Segundo, I. R., Freitas, E., Vasilevskiy, M., Carneiro, J., & Tavares, C. J. (2022). Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Communications, 341, 114573. https://doi.org/https://doi.org/10.1016/j.ssc.2021.114573

Li, D., Fan, L., Shen, Y., Qi, M., Ali, M. R., Liu, D., & Li, S. (2018). Degradation of Rhodamine B Under Visible-Light by Cu-Doped ZnAl Layered Double Hydroxide. Journal of Nanoscience and Nanotechnology, 19(2), 1090–1097. https://doi.org/10.1166/jnn.2019.15741

Li, J., Zhang, S., Chen, Y., Liu, T., Liu, C., Zhang, X., Yi, M., Chu, Z., & Han, X. (2017). A novel three-dimensional hierarchical CuAl layered double hydroxide with excellent catalytic activity for degradation of methyl orange. RSC Advances, 7(46), 29051–29057. https://search.ebscohost.com/login.aspx?direct=true&db=eoah&AN=42318966&lang=es&site=ehost-live

Li, Z., Liu, J., Zhao, J., Shi, R., Waterhouse, G. I. N., Wen, X.-D., & Zhang, T. (2023). Photo-Driven Hydrogen Production from Methanol and Water using Plasmonic Cu Nanoparticles Derived from Layered Double Hydroxides. Advanced Functional Materials, 33(11), 2213672.

Likhar, P. R., Arundhathi, R., Kantam, M. L., & Prathima, P. S. (2009). Amination of alcohols catalyzed by copper-aluminium Hydrotalcite: A green synthesis of amines. European Journal of Organic Chemistry, 31, 5383–5389. https://doi.org/10.1002/ejoc.200900628

Lokesh, S., & Srivastava, R. (2023). CuAl layered double hydroxide as a highly efficient electrocatalyst for the electrolysis of water into hydrogen and oxygen fuels. International Journal of Hydrogen Energy, 48(1), 35–50. https://search.ebscohost.com/login.aspx?direct=true&db=eoah&AN=61521757&lang=es&site=ehost-live

Lwin, Y., & Abdullah, F. (2009). High temperature adsorption of carbon dioxide on Cu-Al hydrotalcite-derived mixed oxides: Kinetics and equilibria by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 97(3), 885–889. https://doi.org/10.1007/s10973-009-0156-7

Lwin, Y., Yarmo, M. A., Yaakob, Z., Mohamad, A. B., & Daud, W. R. W. (2001). Synthesis and characterization of Cu-Al layered double hydroxides. Materials Research Bulletin, 36(1–2), 193–198. https://doi.org/10.1016/S0025-5408(01)00491-3

Martín Del Campo, E., Valente, J. S., Pavón, T., Romero, R., Mantilla, Á., & Natividad, R. (2011). 4-chlorophenol oxidation photocatalyzed by a calcined Mg-Al-Zn layered double hydroxide in a co-current downflow bubble column. Industrial and Engineering Chemistry Research, 50(20), 11544–11552. https://doi.org/10.1021/ie200412p

Merlini, M., Perchiazzi, N., Hanfland, M., & Bossak, A. (2012). Phase transition at high pressure in Cu2CO3(OH) 2 related to the reduction of the Jahn-Teller effect. Acta Crystallographica Section B: Structural Science, 68(3), 266–274. https://doi.org/10.1107/S0108768112011226

Misra, C. (1992). Composition and Properties of Synthetic Hydrotalcites. Clays and Clay Minerals, 40(2), 145–150. https://doi.org/10.1346/CCMN.1992.0400202

Miyata, S. (1975). The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties-i: The systems Mg2+-Al3+-No3 -, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4 -, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clays and Clay Minerals, 23(5), 369–375. https://doi.org/10.1346/CCMN.1975.0230508

Miyata, S. (1980). Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 50–56.

Miyata, S. (1983). Anion-Exchange Properties of Hydrotalcite-Like Compounds. Clays and Clay Minerals, 31(4), 305–311. https://doi.org/10.1346/CCMN.1983.0310409

Miyata, S., & Kumura, T. (1973). Synthesis of New Hydrotalcite-Like Compounds and Their Physico-Chemical Properties. Chemistry Letters, 2(8), 843–848. https://doi.org/10.1246/cl.1973.843

Mizugaki, T., Arundhathi, R., Mitsudome, T., Jitsukawa, K., & Kaneda, K. (2013). Selective hydrogenolysis of glycerol to 1,2-propanediol using heterogeneous copper nanoparticle catalyst derived from CuAl hydrotalcite. Chemistry Letters, 42(7), 729–731. https://doi.org/10.1246/cl.130198

Muñoz, V., Zotin, F. M. Z., & Palacio, L. A. (2015). Copper-aluminum hydrotalcite type precursors for NOx abatement. Catalysis Today, 250(x), 173–179. https://doi.org/10.1016/j.cattod.2014.06.004

Nalawade.P., Aware. B., Kadam. V.J., Hirlekar. R. S. (2009). Layered Double Hydroxides: A review. Journal of Scientific and Industrial Research, 68, 267–272. http://nopr.niscpr.res.in/handle/123456789/3482

Nishimura, S., Takagaki, A., & Ebitani, K. (2013). Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chemistry, 15(8), 2026. https://doi.org/10.1039/c3gc40405f

Prince, J., Tzompantzi, F., Mendoza-Damián, G., Hernández-Beltrán, F., & Valente, J. S. (2015). Photocatalytic degradation of phenol by semiconducting mixed oxides derived from Zn(Ga)Al layered double hydroxides. Applied Catalysis B: Environmental, 163, 352–360. https://doi.org/10.1016/j.apcatb.2014.08.019

Ramos-Ramírez, E., Gutiérrez-Ortega, N., Tzompantzi, F., Gómez, C. M., Del Angel, G., Herrera-Pérez, G., Serafín-Muñoz, A. H., & Tzompantzi-Flores, C. (2018). Activated Hydrotalcites Obtained by Coprecipitation as Photocatalysts for the Degradation of 2,4,6-Trichlorophenol. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/8267631

Reichle, W. T. (1985). Catalytic reactions by thermally activated, synthetic, anionic clay minerals. Journal of Catalysis, 94(2), 547–557. https://doi.org/10.1016/0021-9517(85)90219-2

Reichle, W. T. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22(1), 135–141. https://doi.org/10.1016/0167-2738(86)90067-6

Reichle, W. T., Kang, S. Y., & Everhardt, D. S. (1986). The nature of the thermal decomposition of a catalytically active anionic clay mineral. Journal of Catalysis, 101(2), 352–359. https://doi.org/10.1016/0021-9517(86)90262-9

Reinen, P., Wellern, H. O., & Wegwerth, J. (1997). Jahn-Teller-type phase transitions in oxide ceramics and other solids with Cu(II) - From the viewpoint of a solid state chemist. Zeitschrift Fur Physik B-Condensed Matter, 104(4), 595–600. https://doi.org/10.1007/s002570050494

Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88–89, 239–269. https://doi.org/10.1016/j.clay.2013.12.002

Rives, V., Dubey, A., & Kannan, S. (2001). Synthesis, characterization and catalytic hydroxylation of phenol over CuCoAl ternary hydrotalcites. Physical Chemistry Chemical Physics, 3(21), 4826–4836. https://doi.org/10.1039/B103656B

Sato, T., Fujita, H., Endo, T., Shimada, M., & Tsunashima, A. (1988). Synthesis of hydrotalcite-like compounds and their physico-chemical properties. Reactivity of Solids, 5(2–3), 219–228. https://doi.org/10.1016/0168-7336(88)80089-5

Schweitzer, G. K., & Pesterfield, L. L. (2010). The Aqueous Chemistry of the Elements, 434 Oxford University Press. New York.

Schwenk, C. F., & Rode, B. M. (2003). The influence of the Jahn–Teller effect and of heteroligands on the reactivity of Cu2+. Chemical Communications, 3(11), 1286–1287. https://doi.org/10.1039/b301709e

Takehira, K., & Shishido, T. (2007). Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect.” Catalysis Surveys from Asia, 11(1–2), 1–30. https://doi.org/10.1007/s10563-007-9016-2

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Tokudome, Y., Morimoto, T., Tarutani, N., Vaz, P. D., Nunes, C. D., Prevot, V., Stenning, G. B. G., & Takahashi, M. (2016). Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano, 10(5), 5550–5559. https://doi.org/10.1021/acsnano.6b02110

Trifiro, F., Vaccari, A., & Del Piero, G. (1988). Preparation and properties of copper synthetic anionic clays. Studies in Surface Science and Catalysis, 39(C), 571–580. https://doi.org/10.1016/S0167-2991(09)60780-1

Trujillano, R., Holgado, M. J., Pigazo, F., & Rives, V. (2006a). Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer. Physica B: Condensed Matter, 373(2), 267–273. https://doi.org/10.1016/j.physb.2005.11.154

Trujillano, R., Holgado, M. J., Pigazo, F., & Rives, V. (2006b). Preparation, physicochemical characterisation and magnetic properties of Cu–Al layered double hydroxides with CO32? and anionic surfactants with different alkyl chains in the interlayer. Physica B: Condensed Matter, 373(2), 267–273. https://search.ebscohost.com/login.aspx?direct=true&db=eoah&AN=8533663&lang=es&site=ehost-live

Velu, S., & Swamy, C. S. (1996). Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds. Applied Catalysis A: General, 145(1–2), 141–153. https://doi.org/10.1016/0926-860X(96)00133-0

Vorontsova, O. A., Saenko, R. N., & Lebedeva, O. E. (2007). Scandium-containing layered hydroxides. Russian Journal of Inorganic Chemistry, 52(11), 1662–1665. https://doi.org/10.1134/S0036023607110046

Voyer, N., Soisnard, A., Palmer, S. J., Martens, W. N., & Frost, R. L. (2009). Thermal decomposition of the layered double hydroxides of formula Cu 6Al2(OH)16CO3 and Zn 6Al2(OH)16CO3. Journal of Thermal Analysis and Calorimetry, 96(2), 481–485. https://doi.org/10.1007/s10973-008-9169-x

Wang, F., Zhang, Y., Liang, W., Chen, L., Li, Y., & He, X. (2018). Non-enzymatic glucose sensor with high sensitivity based on Cu-Al layered double hydroxides. Sensors and Actuators B: Chemical, 273, 41–47.

Yamaoka, T., Abe, M., & Tsuji, M. (1989). Synthesis of CuAl hydrotalcite like compound and its ion exchange property. Materials Research Bulletin, 24(10), 1183–1199. https://doi.org/10.1016/0025-5408(89)90193-1

Yan, K., Liao, J., Wu, X., & Xie, X. (2013). Facile synthesis of eco-friendly cu-hydrotalcite catalysts for highly selective synthesis of furfural diethyl acetal and benzoin ethyl ether. Advanced Materials Letters, 4(9), 702–707. https://doi.org/10.5185/amlett.2013.2419

Yi, Y., Wei, Y., Tsang, P. E., & Fang, Z. (2019). Aging effects on the stabilisation and reactivity of iron-based nanoparticles green synthesised using aqueous extracts of Eichhornia crassipes. Environmental Science and Pollution Research, 26(27), 28361–28371. https://doi.org/10.1007/s11356-019-06006-z

Downloads

Published

2024-09-14

How to Cite

NIETO-ZAMBRANO, S., Ramos-Ramírez, E. ., Tzompantzi-Morales, F., & Gutiérrez-Ortega, N. (2024). A A XRD Study of the CuAl Layered Double Hydroxide Synthesis Evolution. OAJ Materials and Devices, 8. Retrieved from https://caip.co-ac.com/index.php/materialsanddevices/article/view/167